203
Views
2
CrossRef citations to date
0
Altmetric
Articles

Exploring rotation-translation coupling for a confined asymmetric rotor using molecular dynamics simulations: the case of the water molecule trapped inside a rare gas matrix

, &
Pages 942-949 | Received 05 May 2020, Accepted 27 Jul 2020, Published online: 19 Aug 2020

References

  • Whittle E, Dows DA, Pimentel GC. Matrix isolation method for the experimental study of unstable species. J Chem Phys. 1954;22:1943–1944. doi: 10.1063/1.1739957
  • Becker ED, Pimentel GC. Spectroscopic studies of reactive molecules by the matrix isolation method. J Chem Phys. 1956;25:224–228. doi: 10.1063/1.1742860
  • Van Thiel M, Becker ED, Pimentel GC. Infrared studies of hydrogen bonding of water by the matrix isolation technique. J Chem Phys. 1957;27:486–490. doi: 10.1063/1.1743753
  • Bentwood RM, Barnes AJ, Orville-Thomas WJ. Studies of intermolecular interactions by matrix isolation vibrational spectroscopy. J Mol Spectrosc. 1980;84:391–404. doi: 10.1016/0022-2852(80)90031-4
  • Behrens-Griesenbach A, Luck WAP. Low frequency motions of water isolated in low temperature matrices. J Mol Struct. 1982;80:471–476. doi: 10.1016/0022-2860(82)87275-X
  • Fajardo ME, Tam S, DeRose ME. Matrix isolation spectroscopy of H2O, D2O and HDO in solid parahydrogen. J Mol Struct. 2004;695:111–127. doi: 10.1016/j.molstruc.2003.11.043
  • Redington RL, Milligan DE. Molecular rotation and ortho-para nuclear spin conversion of water suspended in solid Ar, Kr and Xe. J Chem Phys. 1963;39:1276–1284. doi: 10.1063/1.1734427
  • Robinson DW. Spectra of matrix-isolated water in the ‘pure rotation’ region. J Chem Phys. 1963;39:3430–3432. doi: 10.1063/1.1734210
  • Catalano EC, Milligan DE. Infrared spectra of H2O, D2O and HDO in solid argon, krypton and xenon. J Chem Phys. 1959;30:45–47. doi: 10.1063/1.1729939
  • Redington RL, Milligan DE. Infrared spectroscopic evidence for the rotation of the water molecule in solid argon. J Chem Phys. 1962;37:2162–2166. doi: 10.1063/1.1732982
  • Turgeon PA, Vermette J, Alexandrowicz G, et al. Confinement effects in the nuclear spin isomer conversion of H2O. J Phys Chem A. 2017;121:1571–1576. doi: 10.1021/acs.jpca.7b00893
  • Abouaf-Marguin L, Vasserot AM, Pardanaud C, et al. Nuclear spin conversion of water diluted in solid argon at 4.2 K: Environment and atmospheric impurities effetcs. Chem Phys Lett. 2007;447:232–235. doi: 10.1016/j.cplett.2007.09.014
  • Abouaf-Marguin L, Vasserot AM, Pardanaud C, et al. Nuclear spin conversion of H2O trapped in solid xenon at 4.4 K: A new assignment of ν2 rovibrational lines. Chem Phys Lett. 2009;480:82–85. doi: 10.1016/j.cplett.2009.08.071
  • Fry HA, Jones LH, Swanson BI. High-resolution spectra of the 1(1,1) ← 0(0,0) rotational transition of water in argon and krypton matrices. Chem Phys Lett. 1984;105:547–550. doi: 10.1016/0009-2614(84)80109-8
  • Friedmann H, Kimel S. Interpretation of spectra of HCl and DCl in an argon matrix. J Chem Phys. 1964;41:2552–2553. doi: 10.1063/1.1726302
  • Friedmann H, Kimmel S. Rotation-translation coupling spectrum of matrix-isolated diatomic molecules in the near and far infrared. J Chem Phys. 1966;44:4359–4360. doi: 10.1063/1.1726636
  • Friedmann H, Kimel S. Rotation-translation coupling effect in noble-gas crystals containing molecular impurities. J Chem Phys. 1967;47:3589–3605. doi: 10.1063/1.1712427
  • Ceponkus J, Uvdal P, Nelander B. The coupling between translation and rotation for monomeric water in noble gas matrices. J Chem Phys. 2013;138:244305. doi: 10.1063/1.4810753
  • Keyser LF, Robinson GW. Infrared spectra of Hcl and Dcl in solid rare gases. I. Monomers. J Chem Phys. 1966;44:3225–3239. doi: 10.1063/1.1727217
  • Miyamoto Y, Ooe H, Susumu K, et al. Spectroscopy of HF and HF-containing clusters in solid parahydrogen. J Phys Chem A. 2011;115:14254–14261. doi: 10.1021/jp207419m
  • Fajardo ME. High-resolution rovibrational spectroscopy of carbon monoxide isotopologues isolated in solid parahydrogen. J Phys Chem A. 2013;117:13504–13512. doi: 10.1021/jp407267u
  • Simon A, Iftner C, Mascetti J, et al. Water clusters in an argon matrix: infrared spectra from molecular dynamics simulation with a self-consistent charge density functional-based tight binding/force-field potential. J Phys Chem A. 2015;119:2449–2467. doi: 10.1021/jp508533k
  • Dinu DF, Podewitz M, Grothe H, et al. Toward elimination of discrepancies between theory and experiment: Anharmonic rotational-vibrational spectrum of water in solid noble gas matrices. J Phys Chem A. 2019;123:8234–82242. doi: 10.1021/acs.jpca.9b07221
  • Manogaran D, Subramanian Y. Understanding translational-rotational coupling in liquid water through changes in mass distribution. J Phys Chem B. 2017;121:11344–11355. doi: 10.1021/acs.jpcb.7b05468
  • Makarewicz J. Ab initio intermolecular potential energy surfaces of the water-rare gas atom complexes. J Chem Phys. 2008;129:184310. doi: 10.1063/1.3009270
  • Cohen RC, Saykally RJ. Determination of an improved intermolecular global potential energy surface for Ar-H2O from vibration-rotation-tunneling spectroscopy. J Chem Phys. 1993;98:6007–6030. doi: 10.1063/1.464841
  • Tuckerman ME. Statistical mechanics: theory and molecular simulation. New York (NY): Oxford University Press; 2010.
  • Karney CFF. Quaternions in molecular modeling. J Mol Graph Model. 2007;25:595–604. doi: 10.1016/j.jmgm.2006.04.002
  • Miller TF, Eleftheriou M, Pattnaik P, et al. Symplectic quaternion scheme for biophysical molecular dynamics. J Chem Phys. 2002;116:8649–8659. doi: 10.1063/1.1473654
  • Kittel C. Introduction to solid state physics. New York: Wiley; 2004.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comp Phys. 1995;117:1–19. lammp.sandia.gov [Internet] Available from https://lammps.sandia.gov/. doi: 10.1006/jcph.1995.1039
  • Fuji Y, Lurie NS, Pynn R, et al. Inelastic neutron scattering from solid 36Ar. Phys Rev B. 1974;10:3647–3659. doi: 10.1103/PhysRevB.10.3647
  • Putaud T. Études infrarouges des isotopes H216O, H217O et H218O, de la molécule d’eau à basse température. Dynamique de conversion de spin nucléaire en matrice de gaz rare et rapport ortho-para de l’eau dans la Barre d’Orion [Infrared studies of H216O, H217O et H218O isotopologues at low temperatures. Nuclear spin conversion dynamics in rare-gas matrices and ortho to para ratio in the Orion bar] [dissertation]. Paris (FR): Sorbone Université;2019.
  • Mannheim PD, Friedmann H. Theory of optical absorption by diatomic molecules embedded in rare gas crystals. Phys Stat Sol. 1970;39:409–420. doi: 10.1002/pssb.19700390207
  • Atkins P, Friedman R. Molecular quantum mechanics. 5th edition New York (NY): Oxford University Press; 2011.
  • Chapovsky PL. Conversion of nuclear spin isomers of water molecules under ultracold conditions of space. Quantum Electron. 2019;49:473–478. doi: 10.1070/QEL17006
  • Tanaka K, Harada K, Oka T. Ortho-para mixing hyperfine interaction in the H2O+ ion and nuclear spin equilibration. J Phys Chem A. 2013;117:9584–9592. doi: 10.1021/jp312270u

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.