342
Views
8
CrossRef citations to date
0
Altmetric
Articles

A ReaxFF molecular dynamics study on the mechanism and the typical pyrolysis gases in the pyrolysis process of Longkou oil shale kerogen

ORCID Icon, &
Pages 1191-1199 | Received 13 May 2020, Accepted 03 Aug 2020, Published online: 26 Aug 2020

References

  • Gwyn JE. Oil from shale as a viable replacement of depleted crude reserves: processes and challenges. Fuel Process Technol. 2001;70(1):27–40. doi: 10.1016/S0378-3820(00)00150-8
  • Tong J, Han X, Wang S, et al. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (solid-state 13C NMR, XPS, FT-IR, and XRD). Energy Fuels. 2011;25(9):4006–4013. doi: 10.1021/ef200738p
  • Freund H, Walters CC, Kelemen SR, et al. Predicting oil and gas compositional yields via chemical structure–chemical yield modeling (CS-CYM): Part 1–concepts and implementation. Org Geochem. 2007;38(2):288–305. doi: 10.1016/j.orggeochem.2006.09.009
  • Makeen YM, Abdullah WH, Hakimi MH, et al. Source rock characteristics of the lower cretaceous Abu Gabra formation in the Muglad Basin, Sudan, and its relevance to oil generation studies. Mar Pet Geol. 2015;59:505–516. doi: 10.1016/j.marpetgeo.2014.09.018
  • Makeen YM, Abdullah WH, Ayinla HA, et al. Organic geochemical characteristics and depositional setting of Paleogene oil shale, mudstone and sandstone from onshore Penyu Basin, Chenor, Pahang, Malaysia. Int J Coal Geol. 2019;207:52–72. doi: 10.1016/j.coal.2019.03.012
  • Alhesan JSA, Fei Y, Marshall M, et al. Long time, low temperature pyrolysis of El-Lajjun oil shale. J Anal Appl Pyrolysis. 2018;130:135–141. doi: 10.1016/j.jaap.2018.01.017
  • Yang HS, Sohn HY. Mathematical analysis of the effect of retorting pressure on oil yield and rate of oil generation from oil shale. Ind Eng Chem Process Des Dev. 1985;24(2):274–280. doi: 10.1021/i200029a010
  • Wang S, Liu J, Jiang X, et al. Effect of heating rate on products yield and characteristics of non-condensable gases and shale oil obtained by retorting dachengzi oil shale. Oil Shale. 2013;30(1):27–47. doi: 10.3176/oil.2013.1.04
  • Fletcher TH, Gillis R, Adams J, et al. Characterization of macromolecular structure elements from a Green River oil shale, II. Characterization of pyrolysis products by 13C NMR, GC/MS, and FTIR. Energy Fuels. 2014;28(5):2959–2970. doi: 10.1021/ef500095j
  • Lai D, Zhang G, Xu G. Characterization of oil shale pyrolysis by solid heat carrier in moving bed with internals. Fuel Process Technol. 2017;158:191–198. doi: 10.1016/j.fuproc.2017.01.005
  • Guan XH, Liu Y, Wang D, et al. Three-dimensional structure of a Huadian Oil shale Kerogen model: An experimental and theoretical study. Energy Fuels. 2015;29(7):4122–4136. doi: 10.1021/ef502759q
  • Van Duin AC, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001;105(41):9396–9409. doi: 10.1021/jp004368u
  • Rismiller SC, Groves MM, Meng M, et al. Water assisted liquefaction of lignocellulose biomass by ReaxFF based molecular dynamic simulations. Fuel. 2018;215:835–843. doi: 10.1016/j.fuel.2017.11.108
  • Jin H, Wu Y, Guo L, et al. Molecular dynamic investigation on hydrogen production by polycyclic aromatic hydrocarbon gasification in supercritical water. Int J Hydrogen Energy. 2016;41(6):3837–3843. doi: 10.1016/j.ijhydene.2016.01.007
  • Liu J, Guo X. ReaxFF molecular dynamics simulation of pyrolysis and combustion of pyridine. Fuel Process Technol. 2017;161:107–115. doi: 10.1016/j.fuproc.2017.03.016
  • Castro-Marcano F, Kamat AM, Russo MF Jr, et al. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field. Combust Flame. 2012;159(3):1272–1285. doi: 10.1016/j.combustflame.2011.10.022
  • Yan G, Zhang Z, Yan K. Reactive molecular dynamics simulations of the initial stage of brown coal oxidation at high temperatures. Mol Phys. 2013;111(1):147–156. doi: 10.1080/00268976.2012.708443
  • Salmon E, van Duin AC, Lorant F, et al. Early maturation processes in coal. Part 2: reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures. Org Geochem. 2009;40(12):1195–1209. doi: 10.1016/j.orggeochem.2009.09.001
  • Li X, Mo Z, Liu J, et al. Revealing chemical reactions of coal pyrolysis with GPU-enabled ReaxFF molecular dynamics and cheminformatics analysis. Mol Simul. 2015;41(1–3):13–27. doi: 10.1080/08927022.2014.913789
  • Zheng M, Li X, Liu J, et al. Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis. Energy Fuels. 2014;28(1):522–534. doi: 10.1021/ef402140n
  • Zheng M, Li X, Liu J, et al. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics. Energy Fuels. 2013;27(6):2942–2951. doi: 10.1021/ef400143z
  • Zhan JH, Wu R, Liu X, et al. Preliminary understanding of initial reaction process for subbituminous coal pyrolysis with molecular dynamics simulation. Fuel. 2014;134:283–292. doi: 10.1016/j.fuel.2014.06.005
  • Zou C, Raman S, van Duin AC. Large-scale reactive molecular dynamics simulation and kinetic modeling of high-temperature pyrolysis of the gloeocapsomorphaprisca microfossils. J Phys Chem B. 2014;118(23):6302–6315. doi: 10.1021/jp501925a
  • Liu X, Zhan JH, Lai D, et al. Initial pyrolysis mechanism of oil shale kerogen with reactive molecular dynamics simulation. Energy Fuels. 2015;29(5):2987–2997. doi: 10.1021/acs.energyfuels.5b00084
  • Siskin M, Scouten CG, Rose KD, et al. Detailed structural characterization of the organic material in Rundle Ramsay Crossing and Green River oil shales. In: Snape C, editor. Composition, geochemistry and conversion of oil shales. Dordrecht: Springer; 1995. p. 143–158.
  • Makeen YM, Abdullah WH, Abdul Ghofur MN, et al. Hydrocarbon generation potential of Oligocene oil shale deposit at onshore Penyu Basin, Chenor, Pahang, Malaysia. Energy Fuels. 2019;33(1):89–105. doi: 10.1021/acs.energyfuels.8b03164
  • Hakimi MH, Abdullah WH, Alqudah M, et al. Pyrolysis analyses and bulk kinetic models of the Late Cretaceous oil shales in Jordan and their implications for early mature sulphur-rich oil generation potential. Mar Pet Geol. 2018;91:764–775. doi: 10.1016/j.marpetgeo.2018.01.036
  • Liang YH, Wang F, Zhang H, et al. A ReaxFF molecular dynamics study on the mechanism of organic sulfur transformation in the hydropyrolysis process of lignite. Fuel Process Technol. 2016;147:32–40. doi: 10.1016/j.fuproc.2015.09.007
  • Qian Y, Zhan JH, Lai D, et al. Primary understanding of non-isothermal pyrolysis behavior for oil shale kerogen using reactive molecular dynamics simulation. Int J Hydrogen Energy. 2016;41(28):12093–12100. doi: 10.1016/j.ijhydene.2016.05.106
  • Salmon E, van Duin AC, Lorant F, et al. Thermal decomposition process in algaenan of Botryococcus braunii race L. Part 2: molecular dynamics simulations using the ReaxFF reactive force field. Org Geochem. 2009;40(3):416–427. doi: 10.1016/j.orggeochem.2008.08.012
  • Fletcher TH, Kerstein AR, Pugmire RJ, et al. Chemical percolation model for devolatilization. 3. Direct use of carbon-13 NMR data to predict effects of coal type. Energy Fuels. 1992;6(4):414–431. doi: 10.1021/ef00034a011
  • Riboulleau A, Baudin F, Deconinck JF, et al. Depositional conditions and organic matter preservation pathways in an epicontinental environment: the Upper Jurassic Kashpir Oil Shales (Volga Basin, Russia). Palaeogeography, Palaeoclimatology. Palaeoecology. 2003;197(3–4):171–197. doi: 10.1016/S0031-0182(03)00460-7
  • Ru X, Cheng Z, Song L, et al. Experimental and computational studies on the average molecular structure of Chinese Huadian oil shale kerogen. J Mol Struct. 2012;1030:10–18. doi: 10.1016/j.molstruc.2012.07.027

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.