9,386
Views
48
CrossRef citations to date
0
Altmetric
Articles

Finite-size effects of diffusion coefficients computed from molecular dynamics: a review of what we have learned so far

, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 831-845 | Received 28 Jun 2020, Accepted 05 Aug 2020, Published online: 01 Sep 2020

References

  • Cussler EL. Diffusion: mass transfer in fluid systems. 3rd ed. Cambridge: Cambridge University Press; 2009.
  • Basu S, Kumar N. Modelling and simulation of diffusive processes. 1st ed. Cham: Springer; 2016.
  • Tyrrell HJV, Harris K. Diffusion in liquids: a theoretical and experimental study. 1st ed. Oxford: Butterworth-Heinemann; 1984.
  • Taylor R, Krishna R. Modelling reactive distillation. Chem Eng Sci. 2000;55:5183–5229.
  • Wilson ID. Encyclopedia of separation science. 1st ed. San Diego (CA): Elsevier; 2000.
  • Liu X, Martín-Calvo A, McGarrity E, et al. Fick diffusion coefficients in ternary liquid systems from equilibrium molecular dynamics simulations. Ind Eng Chem Res. 2012;51:10247–10258.
  • Wesselingh J, Krishna R. Mass transfer in multicomponent mixtures. 1st ed. Delft: Delft University Press; 2000.
  • Bird RB. Transport phenomena. Appl Mech Rev. 2002;55:R1–R4.
  • Lyons WC, Plisga GJ. Standard handbook of petroleum and natural gas engineering. 3rd ed. Oxford: Elsevier; 2015.
  • Liu X, Schnell SK, Simon J-M, et al. Fick diffusion coefficients of liquid mixtures directly obtained from equilibrium molecular dynamics. J Phys Chem B. 2011;115:12921–12929.
  • Taylor R, Krishna R. Multicomponent mass transfer. 1st ed. Vol. 2. New York (NY): John Wiley & Sons; 1993.
  • Bird RB, Klingenberg DJ. Multicomponent diffusion– A brief review. Adv Water Resour. 2013;62:238–242.
  • Curtiss C, Bird RB. Multicomponent diffusion. Ind Eng Chem Res. 1999;38:2515–2522.
  • Einstein A. On the motion required by the molecular kinetic theory of heat of small particles suspended in a stationary liquid. Ann Phys. 1905;17:549–560.
  • Bian X, Kim C, Karniadakis GE. 111 years of Brownian motion. Soft Matter. 2016;12:6331–6346.
  • Peters C, Wolff L, Vlugt TJH. Diffusion in liquids: experiments, molecular dynamics, and engineering models. In: Bedeaux D, Kjelstrup S, Sengers JV, editors. Experimental thermodynamics. Vol. X: Non-equilibrium thermodynamics with applications. 1st ed. Cambridge: Royal Society of Chemistry; 2015. p. 78–104.
  • Cussler EL. Multicomponent diffusion. 1st ed. Amsterdam: Elsevier; 2013.
  • Graham TI. The Bakerian lecture. On the diffusion of liquids. Phil Trans R Soc London. 1850;140:1–46.
  • Fick AV. On liquid diffusion. Lond Edinb Dubl Phil Mag J Sci. 1855;10:30–39.
  • Bardow A, Kriesten E, Voda MA, et al. Prediction of multicomponent mutual diffusion in liquids: model discrimination using NMR data. Fluid Phase Equilib. 2009;278:27–35.
  • Peters C, Wolff L, Haase S, et al. Multicomponent diffusion coefficients from microfluidics using Raman microspectroscopy. Lab Chip. 2017;17:2768–2776.
  • Piszko M, Batz K, Rausch MH. Diffusivities of binary mixtures consisting of carbon dioxide, methane, and propane by dynamic light scattering. J Chem Eng Data. 2019;65(3):1068–1082.
  • Giraudet C, Knoll MS, Galvan Y, et al. Diffusion of gold nanoparticles in inverse opals probed by heterodyne dynamic light scattering. Transp Porous Media. 2020;131:723–737.
  • Zangi P, Rausch MH, Fröba AP. Binary diffusion coefficients for gas mixtures of propane with methane and carbon dioxide measured in a loschmidt cell combined with holographic interferometry. Int J Thermophys. 2019;40:18.
  • Wakeham WA, Nagashima A, Sengers JV. Measurement of the transport properties of fluids. Experimental thermodynamics. Vol. 3. International Union of Pure and Applied Chemistry. Commission on Thermodynamics. Oxford: Blackwell Scientific Publications; 1991.
  • Wolff L, Koß H-J, Bardow A. The optimal diffusion experiment. Chem Eng Sci. 2016;152:392–402.
  • Bardow A, Göke V, Koß H-J, et al. Concentration-dependent diffusion coefficients from a single experiment using model-based Raman spectroscopy. Fluid Phase Equilib. 2005;228:357–366.
  • Rausch MH, Heller A, Fröba AP. Binary diffusion coefficients of glycerol–water mixtures for temperatures from 323 to 448 K by dynamic light scattering. J Chem Eng Data. 2017;62:4364–4370.
  • Kriesten E, Voda M, Bardow A, et al. Direct determination of the concentration dependence of diffusivities using combined model-based Raman and NMR experiments. Fluid Phase Equilib. 2009;277:96–106.
  • Celebi AT, Vlugt TJH, Moultos OA. Structural, thermodynamic and transport properties of aqueous reline and ethaline solutions from molecular dynamics simulations. J Phys Chem B. 2019;123(51):11014–11025.
  • Edward JT. Molecular volumes and the Stokes-Einstein equation. J Chem Educ. 1970;47:261.
  • Wilke C, Chang P. Correlation of diffusion coefficients in dilute solutions. AIChE J. 1955;1:264–270.
  • Hopp M, Mele J, Gross J. Self-diffusion coefficients from entropy scaling using the PCP-SAFT equation of state. Ind Eng Chem Res. 2018;57:12942–12950.
  • Mutoru JW, Leahy-Dios A, Firoozabadi A. Modeling infinite dilution and Fickian diffusion coefficients of carbon dioxide in water. AIChE J. 2011;57:1617–1627.
  • Brokaw RS. Predicting transport properties of dilute gases. Ind Eng Chem Process Design Dev. 1969;8:240–253.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. Vol. 1. San Diego (CA): Academic Press; 2002.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. 2nd ed. Oxford: Oxford University Press; 2017.
  • Rapaport DC, Rapaport DCR. The art of molecular dynamics simulation. 2nd ed. Cambridge: Cambridge University Press; 2004.
  • Tuckerman M. Statistical mechanics: theory and molecular simulation. 1st ed. Oxford: Oxford University Press; 2010.
  • Evans DJ, Morriss GP. Statistical mechanics of nonequilibrium liquids. 2nd ed. Cambridge: Cambridge University Press; 2013.
  • Maginn EJ. Molecular simulation of ionic liquids: current status and future opportunities. J Phys: Condens Matter. 2009;21:373101.
  • Köddermann T, Paschek D, Ludwig R. Molecular dynamic simulations of ionic liquids: a reliable description of structure, thermodynamics and dynamics. Chem Phys Chem. 2007;8:2464–2470.
  • Li Y, Xu J, Li D. Molecular dynamics simulation of nanoscale liquid flows. Microfluid Nanofluid. 2010;9:1011–1031.
  • Todd B, Daivis PJ. Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: techniques and applications. Mol Simul. 2007;33:189–229.
  • Guevara-Carrion G, Janzen T, Muñoz-Muñoz YM, et al. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride. J Chem Phys. 2016;144:124501.
  • Jiang H, Mester Z, Moultos OA, et al. Thermodynamic and transport properties of H2O+NaCl from polarizable force fields. J Chem Theory Comput. 2015;11:3802–3810.
  • Orozco GA, Moultos OA, Jiang H, et al. Molecular simulation of thermodynamic and transport properties for the H2O+NaCl system. J Chem Phys. 2014;141:234507.
  • Liu H, Maginn EJ. A molecular dynamics investigation of the structural and dynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide. J Chem Phys. 2011;135:124507.
  • Liu X, Schnell SK, Simon J-M, et al. Diffusion coefficients from molecular dynamics simulations in binary and ternary mixtures. Int J Thermophys. 2013;34:1169–1196.
  • Liu X, Vlugt TJH, Bardow A. Maxwell–Stefan diffusivities in liquid mixtures: using molecular dynamics for testing model predictions. Fluid Phase Equilib. 2011;301:110–117.
  • Guevara-Carrion G, Vrabec J, Hasse H. Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation. J Chem Phys. 2011;134:074508.
  • Fernández G, Vrabec J, Hasse H. Self diffusion and binary Maxwell–Stefan diffusion in simple fluids with the Green–Kubo method. Int J Thermophys. 2004;25:175–186.
  • Fernández G, Vrabec J, Hasse H. Self-diffusion and binary Maxwell–Stefan diffusion coefficients of quadrupolar real fluids from molecular simulation. Int J Thermophys. 2005;26:1389–1407.
  • Janzen T, Zhang S, Mialdun A, et al. Mutual diffusion governed by kinetics and thermodynamics in the partially miscible mixture methanol+ cyclohexane. Phys Chem Chem Phys. 2017;19:31856–31873.
  • Janzen T, Vrabec J. Diffusion coefficients of a highly nonideal ternary liquid mixture: Cyclohexane–Toluene–Methanol. Ind Eng Chem Res. 2018;57:16508–16517.
  • Jansen APJ. An introduction to kinetic Monte Carlo simulations of surface reactions. 1st ed. Vol. 856. Berlin: Springer; 2012.
  • Wheeler DR, Newman J. Molecular dynamics simulations of multicomponent diffusion. 1. Equilibrium method. J Phys Chem B. 2004;108:18353–18361.
  • Wheeler DR, Newman J. Molecular dynamics simulations of multicomponent diffusion. 2. Nonequilibrium method. J Phys Chem B. 2004;108:18362–18367.
  • Erpenbeck JJ. Comparison of Green-Kubo and nonequilibrium calculations of the self-diffusion constant of a Lennard-Jones fluid. Phys Rev A. 1987;35:218.
  • MacElroy J. Nonequilibrium molecular dynamics simulation of diffusion and flow in thin microporous membranes. J Chem Phys. 1994;101:5274–5280.
  • Chempath S, Krishna R, Snurr RQ. Nonequilibrium molecular dynamics simulations of diffusion of binary mixtures containing short n-alkanes in faujasite. J Phys Chem B. 2004;108:13481–13491.
  • Tenney CM, Maginn EJ. Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics. J Chem Phys. 2010;132:014103.
  • Kubo R. Statistical-mechanical theory of irreversible processes. I. general theory and simple applications to magnetic and conduction problems. J Phys Soc Japan. 1957;12:570–586.
  • Green MS. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J Chem Phys. 1954;22:398–413.
  • Zhou Y, Miller GH. Green–Kubo formulas for mutual diffusion coefficients in multicomponent systems. J Phys Chem. 1996;100:5516–5524.
  • Zhang Y, Otani A, Maginn EJ. Reliable viscosity calculation from equilibrium molecular dynamics simulations: a time decomposition method. J Chem Theory Comput. 2015;11:3537–3546.
  • Heyes DM. Self-diffusion and shear viscosity of simple fluids. A molecular-dynamics study. J Chem Soc Faraday Trans 2: Mol Chem Phys. 1983;79:1741–1758.
  • Meier K, Laesecke A, Kabelac S. Transport coefficients of the Lennard-Jones model fluid. II self-diffusion. J Chem Phys. 2004;121:9526–9535.
  • Pranami G, Lamm MH. Estimating error in diffusion coefficients derived from molecular dynamics simulations. J Chem Theory Comput. 2015;11:4586–4592.
  • Alder B, Wainwright T. Velocity autocorrelations for hard spheres. Phys Rev Lett. 1967;18:988.
  • Liu H, Silva CM, Macedo EA. Unified approach to the self-diffusion coefficients of dense fluids over wide ranges of temperature and pressure– hard-sphere, square-well, Lennard-Jones and real substances. Chem Eng Sci. 1998;53:2403–2422.
  • Vaz RV, Magalhães AL, Fernandes DL, et al. Universal correlation of self-diffusion coefficients of model and real fluids based on residual entropy scaling law. Chem Eng Sci. 2012;79:153–162.
  • Ohtori N, Ishii Y. Explicit expressions of self-diffusion coefficient, shear viscosity, and the Stokes–Einstein relation for binary mixtures of Lennard-Jones liquids. J Chem Phys. 2015;143:164514.
  • Heyes DM, Cass M, Powles JG, et al. Self-diffusion coefficient of the hard-sphere fluid: system size dependence and empirical correlations. J Phys Chem B. 2007;111:1455–1464.
  • Vaz RV, Magalhães AL, Silva CM. Improved Stokes–Einstein based models for diffusivities in supercritical CO 2. J Taiwan Inst Chem Eng. 2014;45:1280–1284.
  • Raabe G, Sadus RJ. Molecular dynamics simulation of the effect of bond flexibility on the transport properties of water. J Chem Phys. 2012;137:104512.
  • Aimoli CG, Maginn EJ, Abreu CR. Transport properties of carbon dioxide and methane from molecular dynamics simulations. J Chem Phys. 2014;141:134101.
  • Moultos OA, Zhang Y, Tsimpanogiannis IN, et al. System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: the case of CO 2, n-alkanes, and poly (ethylene glycol) dimethyl ethers. J Chem Phys. 2016;145:074109.
  • Kowsari M, Alavi S, Ashrafizaadeh M, et al. Molecular dynamics simulation of imidazolium-based ionic liquids. I. dynamics and diffusion coefficient. J Chem Phys. 2008;129:224508.
  • Perkins SL, Painter P, Colina CM. Experimental and computational studies of choline chloride-based deep eutectic solvents. J Chem Eng Data. 2014;59:3652–3662.
  • Wang J, Hou T. Application of molecular dynamics simulations in molecular property prediction II: diffusion coefficient. J Comput Chem. 2011;32:3505–3519.
  • Bizzarri AR, Cannistraro S. Molecular dynamics simulation evidence of anomalous diffusion of protein hydration water. Phys Rev E. 1996;53:R3040.
  • Klein T, Lenahan FD, Kerscher M, et al. Characterization of long linear and branched alkanes and alcohols for temperatures up to 573.15 K by surface light scattering and molecular dynamics simulations. J Phys Chem B. 2020;124:4146–4163.
  • Wolff L, Jamali SH, Becker TM, et al. Prediction of composition-dependent self-diffusion coefficients in binary liquid mixtures: the missing link for Darken-based models. Ind Eng Chem Res. 2018;57:14784–14794.
  • Maginn EJ, Messerly RA, Carlson DJ, et al. Best practices for computing transport properties 1. Self-diffusivity and viscosity from equilibrium molecular dynamics [article v1. 0]. Liv J Comp Mol Sci. 2018;1:6324.
  • Moultos OA, Tsimpanogiannis IN, Panagiotopoulos AZ, et al. Atomistic molecular dynamics simulations of carbon dioxide diffusivity in n-hexane, n-decane, n-hexadecane, cyclohexane, and squalane. J Phys Chem B. 2016;120:12890–12900.
  • Shah D, Mjalli FS. Effect of water on the thermo-physical properties of Reline: an experimental and molecular simulation based approach. Phys Chem Chem Phys. 2014;16:23900–23907.
  • Baz J, Held C, Pleiss J, et al. Thermophysical properties of glyceline–water mixtures investigated by molecular modelling. Phys Chem Chem Phys. 2019;21:6467–6476.
  • dos Santos TJ, Abreu CR, Horta BA, et al. Self-diffusion coefficients of methane/n-hexane mixtures at high pressures: an evaluation of the finite-size effect and a comparison of force fields. J Supercrit Fluids. 2020;155:104639.
  • Krishna R, Van Baten JM. The darken relation for multicomponent diffusion in liquid mixtures of linear alkanes: an investigation using molecular dynamics (MD) simulations. Ind Eng Chem Res. 2005;44:6939–6947.
  • Guevara-Carrion G, Fingerhut R, Vrabec J. Fick diffusion coefficient matrix of a quaternary liquid mixture by molecular dynamics. J Phys Chem B. 2020;124:4527–4535.
  • Liu X, Bardow A, Vlugt TJH. Multicomponent Maxwell–Stefan diffusivities at infinite dilution. Ind Eng Chem Res. 2011;50:4776–4782.
  • Van De Ven-Lucassen IM, Thijs AJVT, Vlugt JH, et al. Using molecular dynamics to obtain Maxwell–Stefan diffusion coefficients in liquid systems. Mol Phys. 1998;94:495–503.
  • Krishna R, Wesselingh J. The Maxwell–Stefan approach to mass transfer. Chem Eng Sci. 1997;52:861–911.
  • Par S, Guevara-Carrion G, Hasse H, et al. Mutual diffusion in the ternary mixture of water+ methanol+ ethanol and its binary subsystems. Phys Chem Chem Phys. 2013;15:3985–4001.
  • Higgoda UA, Kankanamge CJ, Hellmann R, et al. Fick diffusion coefficients of binary fluid mixtures consisting of methane, carbon dioxide, and propane via molecular dynamics simulations based on simplified pair-specific ab initio-derived force fields. Fluid Phase Equilib. 2019;502:112257.
  • Jamali SH, van Westen T, Moultos OA, et al. Optimizing nonbonded interactions of the OPLS force field for aqueous solutions of carbohydrates: how to capture both thermodynamics and dynamics. J Chem Theory Comput. 2018;14:6690–6700.
  • Vella JR. Fick diffusion coefficients of the gaseous CH 4–CO 2 system from molecular dynamics simulations using traPPE force fields at 101.325, 506.625, 1013.25, 2533.12, and 5066.25 kPa. J Chem Eng Data. 2019;64:3672–3681.
  • Onsager L. Theories and problems of liquid diffusion. Ann N Y Acad Sci. 1945;46:241–265.
  • Krishna R, Van Baten JM. Onsager coefficients for binary mixture diffusion in nanopores. Chem Eng Sci. 2008;63:3120–3140.
  • Kjelstrup S, Schnell SK, Vlugt TJH, et al. Bridging scales with thermodynamics: from nano to macro. Adv Nat Sci: Nanosci Nanotechnol. 2014;5:023002.
  • Schnell SK, Liu X, Simon J-M, et al. Calculating thermodynamic properties from fluctuations at small scales. J Phys Chem B. 2011;115:10911–10918.
  • Fingerhut R, Herres G, Vrabec J. Thermodynamic factor of quaternary mixtures from Kirkwood–Buff integration. Mol Phys. 2020;118:e1643046.
  • Kirkwood JG, Buff FP. The statistical mechanical theory of solutions. I. J Chem Phys. 1951;19:774–777.
  • Dawass N, Krüger P, Schnell SK, et al. Kirkwood–Buff integrals using molecular simulation: estimation of surface effects. Nanomaterials. 2020;10:771.
  • Dawass N, Krüger P, Schnell SK, et al. Kirkwood–Buff integrals from molecular simulation. Fluid Phase Equilib. 2019;486:21–36.
  • Krüger P, Schnell SK, Bedeaux D, et al. Kirkwood–Buff integrals for finite volumes. J Phys Chem Lett. 2013;4:235–238.
  • Hall D. Kirkwood–Buff theory of solutions. an alternative derivation of part of it and some applications. Trans Faraday Soc. 1971;67:2516–2524.
  • Dawass N, Krüger P, Simon J-M, et al. Kirkwood–Buff integrals of finite systems: shape effects. Mol Phys. 2018;116:1573–1580.
  • Schnell SK, Englebienne P, Simon J-M, et al. How to apply the Kirkwood–Buff theory to individual species in salt solutions. Chem Phys Lett. 2013;582:154–157.
  • Ben-Naim A. Molecular theory of solutions. 1st ed. Oxford: Oxford University Press; 2006.
  • Oseen CW. Neuere methoden und ergebnisse in der hydrodynamik. Leipzig: Akademische Verlagsgesellschaft mb H; 1927.
  • Pratt LR, Hummer G. Simulation and theory of electrostatic interactions in solution: computational chemistry, biophysics and aqueous solutions, Santa Fe, New Mexico, USA, 23–25 June 1999. 1st ed. New York (NY): American Institute of Physics; 1999.
  • Dünweg B, Kremer K. Molecular dynamics simulation of a polymer chain in solution. J Chem Phys. 1993;99:6983–6997.
  • Yeh I-C, Hummer G. System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. J Phys Chem B. 2004;108:15873–15879.
  • Simonnin P, Noetinger B, Nieto-Draghi C, et al. Diffusion under confinement: hydrodynamic finite-size effects in simulation. J Chem Theory Comput. 2017;13:2881–2889.
  • Jamali SH, Bardow A, Vlugt TJH. A generalized form for finite-size corrections in mutual diffusion coefficients of multicomponent mixtures Obtained from equilibrium molecular dynamics simulation. J Chem Theory Comput. 2020;16(6):3799–3806.
  • Dünweg B, Kremer K. Microscopic verification of dynamic scaling in dilute polymer solutions: a molecular-dynamics simulation. Phys Rev Lett. 1991;66:2996.
  • Young JM, Panagiotopoulos AZ. System-size dependence of electrolyte activity coefficients in molecular simulations. J Phys Chem B. 2018;122:3330–3338.
  • Sellan DP, Landry ES, Turney J, et al. Size effects in molecular dynamics thermal conductivity predictions. Phys Rev B. 2010;81:214305.
  • Klenk MJ, Lai W. Finite-size effects on the molecular dynamics simulation of fast-ion conductors: A case study of lithium garnet oxide Li 7La 3Zr 2O 1. Solid State Ionics. 2016;289:143–149.
  • Krüger P, Vlugt TJH. Size and shape dependence of finite-volume Kirkwood–Buff integrals. Phys Rev E. 2018;97:051301.
  • Dawass N, Krüger P, Schnell SK, et al. Finite-size effects of Kirkwood–Buff integrals from molecular simulations. Mol Simul. 2018;44:599–612.
  • Mondello M, Grest GS. Viscosity calculations of n-alkanes by equilibrium molecular dynamics. J Chem Phys. 1997;106:9327–9336.
  • Kim K-S, Kim C, Karniadakis GE, et al. Density-dependent finite system-size effects in equilibrium molecular dynamics estimation of shear viscosity: hydrodynamic and configurational study. J Chem Phys. 2019;151:104101.
  • Jamali SH, Hartkamp R, Bardas C, et al. Shear viscosity computed from the finite-Size effects of self-diffusivity in equilibrium molecular dynamics. J Chem Theory Comput. 2018;14:5959–5968.
  • Tsimpanogiannis IN, Moultos OA, Franco LF, et al. Self-diffusion coefficient of bulk and confined water: a critical review of classical molecular simulation studies. Mol Simul. 2019;45:425–453.
  • Jamali SH, Wolff L, Becker TM, et al. Finite-size effects of binary mutual diffusion coefficients from molecular dynamics. J Chem Theory Comput. 2018;14:2667–2677.
  • Cappelezzo M, Capellari C, Pezzin S, et al. Stokes–Einstein relation for pure simple fluids. J Chem Phys. 2007;126:224516.
  • Moultos OA, Tsimpanogiannis IN, Panagiotopoulos AZ. Atomistic molecular dynamics simulations of CO2 diffusivity in H2O for a wide range of temperatures and pressures. J Phys Chem B. 2014;118:5532–5541.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.
  • Berendsen HJ, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91:43–56.
  • Ramírez J, Sukumaran SK, Vorselaars B, et al. Efficient on the fly calculation of time correlation functions in computer simulations. J Chem Phys. 2010;133:154103.
  • Jamali SH, Wolff L, Becker TM, et al. A tool for on-the-fly calculation of transport properties of fluids with the order-n algorithm in LAMMPS. J Chem Inf Model. 2019;59:1290–1294.
  • https://github.com/omoultosEthTuDelft/OCTP.
  • Dubbeldam D, Ford DC, Ellis DE, et al. A new perspective on the order-n algorithm for computing correlation functions. Mol Simul. 2009;35:1084–1097.
  • Humbert MT, Zhang Y, Maginn EJ. PyLAT: python LAMMPS analysis tools. J Chem Inf Model. 2019;59:1301–1305.
  • Deublein S, Eckl B, Stoll J, et al. ms2: A molecular simulation tool for thermodynamic properties. Comput Phys Commun. 2011;182:2350–2367.
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935.
  • Kikugawa G, Ando S, Suzuki J, et al. Effect of the computational domain size and shape on the self-diffusion coefficient in a Lennard-Jones liquid. J Chem Phys. 2015;142:024503.
  • Hasimoto H. On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J Fluid Mech. 1959;5:317–328.
  • Tazi S, Boţan A, Salanne M, et al. Diffusion coefficient and shear viscosity of rigid water models. J Phys: Condens Matter. 2012;24:284117.
  • Erdõs M, Michalis F, Vlugt TJH, et al. Diffusivity of [ α]-, [ β]-, [ γ]-cyclodextrin and the inclusion complex of [ β]-cyclodextrin:Ibuprofen in aqueous solutions, a molecular dynamics simulation study. Submitted in Phase Equilibria; 2020.
  • Tsimpanogiannis IN, Jamali SH, Economou IG. On the validity of the Stokes–Einstein relation for various water force fields. Mol Phys. 2019;118:e1702729.
  • Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A. 2001;105:9954–9960.
  • Enders S, Kahl H, Winkelmann J. Surface tension of the ternary system water+ acetone+ toluene. J Chem Eng Data. 2007;52:1072–1079.
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118:11225–11236.
  • Zhao L, Cheng T, Sun H. On the accuracy of predicting shear viscosity of molecular liquids using the periodic perturbation method. J Chem Phys. 2008;129:144501.
  • Berendsen H, Grigera J, Straatsma T. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271.
  • Bocquet L, Barrat J-L. Diffusive motion in confined fluids: mode-coupling results and molecular-dynamics calculations. Europhys Lett. 1995;31:455.
  • Lyklema J. Fundamentals of interface and colloid science: soft colloids. 1st ed. San Diego (CA): Elsevier; 1995.
  • Karniadakis G, Beskok A, Aluru N. Microflows and nanoflows: fundamentals and simulation. 2nd ed. Vol. 29. New York (NY): Springer Science & Business Media; 2005.
  • Erdõs M, Galteland O, Bedeaux D, et al. Gibbs ensemble Monte Carlo simulation of fluids in confinement: relation between the differential and integral pressures. Nanomaterials. 2020;10:293.
  • Rauter MT, Galteland O, Erdõs M, et al. Two-phase equilibrium conditions in nanopores. Nanomaterials. 2020;10:608.
  • Hannaoui R, Galliero G, Hoang H, et al. Influence of confinement on thermodiffusion. J Chem Phys. 2013;139:114704.
  • Collell J, Galliero G. Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation. J Chem Phys. 2014;140:194702.
  • Suk M, Aluru NR. Molecular and continuum hydrodynamics in graphene nanopores. RSC Adv. 2013;3:9365–9372.
  • Ghorbanian J, Celebi AT, Beskok A. A phenomenological continuum model for force-driven nano-channel liquid flows. J Chem Phys. 2016;145:184109.
  • Thomas JA, McGaughey AJ. Reassessing fast water transport through carbon nanotubes. Nano Lett. 2008;8:2788–2793.
  • Hoang H, Galliero G. Grand canonical-like molecular dynamics simulations: application to anisotropic mass diffusion in a nanoporous medium. J Chem Phys. 2012;136:184702.
  • Celebi AT, Barisik M, Beskok A. Electric field controlled transport of water in graphene nano-channels. J Chem Phys. 2017;147:164311.
  • Travis KP, Todd B, Evans DJ. Departure from Navier–Stokes hydrodynamics in confined liquids. Phys Rev E. 1997;55:4288.
  • Qiao R, Aluru NR. Ion concentrations and velocity profiles in nanochannel electroosmotic flows. J Chem Phys. 2003;118:4692–4701.
  • Celebi AT, Nguyen CT, Hartkamp R, et al. The role of water models on the prediction of slip length of water in graphene nanochannels. J Chem Phys. 2019;151:174705.
  • Bocquet L, Charlaix E. Nanofluidics, from bulk to interfaces. Chem Soc Rev. 2010;39:1073–1095.
  • Hoang H, Galliero G. Local viscosity of a fluid confined in a narrow pore. Phys Rev E. 2012;86:021202.
  • Celebi AT, Barisik M, Beskok A. Surface charge-dependent transport of water in graphene nano-channels. Microfluid Nanofluid. 2018;22:7.
  • Giannakopoulos A, Sofos F, Karakasidis T, et al. Unified description of size effects of transport properties of liquids flowing in nanochannels. Int J Heat Mass Transf. 2012;55:5087–5092.
  • Sofos F, Karakasidis TE, Liakopoulos A. How wall properties control diffusion in grooved nanochannels: a molecular dynamics study. Heat and Mass Transf. 2013;49:1081–1088.
  • Marry V, Rotenberg B, Turq P. Structure and dynamics of water at a clay surface from molecular dynamics simulation. Phys Chem Chem Phys. 2008;10:4802–4813.
  • Wei M-J, Zhang L, Lu L, et al. Molecular behavior of water in TiO 2 nano-slits with varying coverages of carbon: a molecular dynamics simulation study. Phys Chem Chem Phys. 2012;14:16536–16543.
  • Joseph S, Aluru NR. Why are carbon nanotubes fast transporters of water? Nano Lett. 2008;8:452–458.
  • Guigas G, Weiss M. Size-dependent diffusion of membrane inclusions. Biophys J. 2006;91:2393–2398.
  • Bashardanesh Z, Elf J, Zhang H, et al. Rotational and translational diffusion of proteins as a function of concentration. ACS Omega. 2019;4:20654–20664.
  • Haridasan N, Kannam SK, Mogurampelly S, et al. Rotational diffusion of proteins in nanochannels. J Phys Chem B. 2019;123:4825–4832.
  • Linke M, Köfinger J, Hummer G. Fully anisotropic rotational diffusion tensor from molecular dynamics simulations. J Phys Chem B. 2018;122:5630–5639.
  • Linke M, Köfinger J, Hummer G. Rotational diffusion depends on box size in molecular dynamics simulations. J Phys Chem Lett. 2018;9:2874–2878.
  • Vögele M, Köfinger J, Hummer G. Finite-Size-Corrected rotational diffusion coefficients of membrane proteins and carbon nanotubes from molecular dynamics simulations. J Phys Chem B. 2019;123:5099–5106.
  • Taylor R, Kooijman HA. Composition derivatives of activity coefficient models (for the estimation of thermodynamic factors in diffusion). Chem Eng Commun. 1991;102:87–106.
  • Chen B, Potoff JJ, Siepmann JI. Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary, and tertiary alcohols. J Phys Chem B. 2001;105:3093–3104.
  • Wick CD, Stubbs JM, Rai N, et al. Transferable potentials for phase equilibria. 7. Primary, secondary, and tertiary amines, nitroalkanes and nitrobenzene, nitriles, amides, pyridine, and pyrimidine. J Phys Chem B. 2005;109:18974–18982.
  • Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B. 1998;102:2569–2577.
  • Jorgensen WL, Madura JD, Swenson CJ. Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc. 1984;106:6638–6646.