76
Views
1
CrossRef citations to date
0
Altmetric
Articles

Efficient recursive Adams–Bashforth methods in molecular dynamics simulations of N-body systems interacting through pairwise potentials

ORCID Icon &
Pages 1248-1254 | Received 07 Feb 2020, Accepted 22 Aug 2020, Published online: 09 Sep 2020

References

  • Verlet L. Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev. 1967;159:98–103. doi: 10.1103/PhysRev.159.98
  • Verlet L. Computer ‘experiments’ on classical fluids ii equilibrium correlation functions. Phys Rev. 1968;165:201–214. doi: 10.1103/PhysRev.165.201
  • Beeman D. Some multistep methods for use in molecular dynamics calculations. J Comput Phys. 1976;20:130–139. doi: 10.1016/0021-9991(76)90059-0
  • Rahman A. Correlations in the motion of atoms in liquid argon. Phys Rev. 1964;136:A405–A411. doi: 10.1103/PhysRev.136.A405
  • Gear CW. Numerical initial value problems in ordinary differential equations. Englewood Cliffs (NJ): Prentice-Hall; 1971.
  • Howe RM. A new family of real-time redictor-corrector integration algorithms. Simulation. 1991;57:177–186. doi: 10.1177/003754979105700308
  • Durran DR. The third-order Adams-Bashforth method: an attractive alternative to leapfrog time differencing. Monthly Weather Rev. 1991;119:702–720. doi: 10.1175/1520-0493(1991)119<0702:TTOABM>2.0.CO;2
  • Rodriguez JI, Jiménez JM, Funes FJ, et al. Recursive and residual algorithms for the efficient numerical integration of multi-body systems. Multibody Syst Dyn. 2004;11:295–320. doi: 10.1023/B:MUBO.0000040798.77064.bc
  • Press WH, Teukolsky SA, Flannery BP, et al. Numerical recipes in fortran 77: volume 1 of fortran numerical recipes: the art of scientific computing. Cambridge: Cambridge University Press; 1992.
  • Marsden JE, Patrick GW, Shadwick WF, editors. Integration algorithms and classical mechanics. Vol. 10. Providence (RI): American Mathematical Society; 1996.
  • Lennard-Jones JE. Cohesion. Proc Phys Soc. 1931;43:461–482. doi: 10.1088/0959-5309/43/5/301
  • McDonald I, Singer K. Examination of the adequacy of the 12–6 potential for liquid argon by means of Monte Carlo calculations. J Chem Phys. 1969;50:2308–2315. doi: 10.1063/1.1671381
  • Pastor RW, Brooks BR, Szabo A. An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol Phys. 1988;65:1409–1419. doi: 10.1080/00268978800101881
  • Kast SM, Brickmann J. Constant temperature molecular dynamics simulations by means of a stochastic collision model. II. The harmonic oscillator. J Chem Phys. 1996;104:3732–3741. doi: 10.1063/1.471028
  • Grønbech-Jensen N, Farago O. A simple and effective verlet-type algorithm for simulating Langevin dynamics. Mol Phys. 2013;111:983–991. doi: 10.1080/00268976.2012.760055
  • Streett W, Staveley L. Experimental study of the equation of state of liquid argon. J Chem Phys. 1969;50:2302–2307. doi: 10.1063/1.1671380
  • Gosman A, Hust JG, Mc Carty RD. Thermodynamic properties of argon from the triple point to 300 K at pressures to 1000 atmospheres. 1969.
  • Yarnell J, Katz M, Wenzel RG, et al. Structure factor and radial distribution function for liquid argon at 85 K. Phys Rev A. 1973;7:2130–2144. doi: 10.1103/PhysRevA.7.2130
  • Naghizadeh J, Rice SA. Kinetic theory of dense fluids. X. Measurement and interpretation of self-diffusion in liquid ar, Kr, Xe, and CH4. J Chem Phys. 1962;36:2710–2720. doi: 10.1063/1.1732357
  • Barker J, Fisher R, Watts R. Liquid argon: Monte Carlo and molecular dynamics calculations. Mol Phys. 1971;21:657–673. doi: 10.1080/00268977100101821
  • Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–1802. doi: 10.1002/jcc.20289
  • Huang J, MacKerell Jr AD. Charmm36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem. 2013;34:2135–2145. doi: 10.1002/jcc.23354
  • Martí J, Padró J, Guàrdia E. Computer simulation of molecular motions in liquids: infrared spectra of water and heavy water. Mol Simul. 1993;11:321–336. doi: 10.1080/08927029308022517
  • Van Der Spoel D, Lindahl E, Hess B, et al. Gromacs: fast, flexible, and free. J Comput Chem. 2005;26:1701–1718. doi: 10.1002/jcc.20291
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039
  • Padró J, Martí J. An interpretation of the low-frequency spectrum of liquid water. J Chem Phys. 2003;118:452–453. doi: 10.1063/1.1524619
  • De Santis A, Ercoli A, Rocca D. Comment on ‘an interpretation of the low-frequency spectrum of liquid water’ [J. Chem. Phys. 118, 452 (2003)]. J Chem Phys. 2004;120:1657–1658. doi: 10.1063/1.1634251
  • Padró J, Martí J. Response to ‘comment on an interpretation of the low-frequency spectrum of liquid water’ [J. Chem. Phys. 118, 452 (2003)]. J Chem Phys. 2004;120:1659–1660. doi: 10.1063/1.1634252
  • Martí J, Csajka FS. Transition path sampling study of flip-flop transitions in model lipid bilayer membranes. Phys Rev E. 2004;69:061918. doi: 10.1103/PhysRevE.69.061918
  • Mishin Y, Mehl M, Papaconstantopoulos D, et al. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys Rev B. 2001;63:224106. doi: 10.1103/PhysRevB.63.224106
  • Purja Pun G, Mishin Y. Development of an interatomic potential for the Ni-Al system. Philos Mag. 2009;89:3245–3267. doi: 10.1080/14786430903258184
  • Pun GP, Mishin Y. Embedded-atom potential for hcp and fcc cobalt. Phys Rev B. 2012;86:134116. doi: 10.1103/PhysRevB.86.134116

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.