5,403
Views
57
CrossRef citations to date
0
Altmetric
Articles

A review of advancements in coarse-grained molecular dynamics simulations

&
Pages 786-803 | Received 05 May 2020, Accepted 21 Sep 2020, Published online: 11 Oct 2020

References

  • Sanbonmatsu KY, Tung C-S. High performance computing in biology: multimillion atom simulations of Nanoscale systems. J Struct Biol. 2007;157:470–480.
  • Kraft JF, Vestergaard M, Schiøtt B, et al. Modeling the self-assembly and stability of DHPC micelles using atomic resolution and coarse grained MD simulations. J Chem Theory Comput. 2012;8:1556–1569.
  • Brocos P, Mendoza-Espinosa P, Castillo R, et al. Multiscale molecular dynamics simulations of micelles: coarse-grain for self-assembly and atomic resolution for finer details. Soft Matter. 2012;8:9005.
  • Shelley JC, Shelley MY, Reeder RC, et al. A coarse grain model for phospholipid simulations. J Phys Chem B. 2001;105:4464–4470.
  • Leontiadou H, Mark AE, Marrink SJ. Antimicrobial peptides in action. J Am Chem Soc. 2006;128:12156–12161.
  • Shub I, Schreiber E, Kliger Y. Saving significant amount of time in MD simulations by using an implicit solvent model and elevated temperatures. ISRN Comput Biol. 2013;2013:1–5.
  • Chen J, Im W, Brooks CL. Implicit solvent force-field optimization. In: Fig M, editor. Modeling solvent environments. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2010. p. 167–190.
  • Wang S, Li Z, Pan W. Implicit-solvent coarse-grained modeling for polymer solutions via Mori-Zwanzig formalism. Soft Matter. 2019;15:7567–7582.
  • Brieg M, Setzler J, Albert S, et al. Generalized born implicit solvent models for small molecule hydration free energies. Phys Chem Chem Phys. 2017;19:1677–1685.
  • Kleinjung J, Fraternali F. Design and application of implicit solvent models in biomolecular simulations. Curr Opin Struct Biol. 2014;25:126–134.
  • Deshmukh SA, Sankaranarayanan SKRS, Suthar K, et al. Role of solvation dynamics and local ordering of water in inducing conformational transitions in poly(N-isopropylacrylamide) Oligomers through the LCST. J Phys Chem B. 2012;116:2651–2663.
  • Peter C, Kremer K. Multiscale simulation of soft matter systems – from the atomistic to the coarse-grained level and back. Soft Matter. 2009;5:4357.
  • Milano G, Santangelo G, Ragone F, et al. Gold nanoparticle/polymer interfaces: all atom structures from molecular dynamics simulations. J Phys Chem C. 2011;115:15154–15163.
  • Ruiz L, Xia W, Meng Z, et al. A coarse-grained model for the mechanical behavior of multi-layer graphene. Carbon. 2015;82:103–115.
  • Hilder TA, Gaston N. Interaction of boron nitride nanosheets with model cell membranes. Chemphyschem. 2016;17:1573–1578.
  • Thomas M, Enciso M, Hilder TA. Insertion mechanism and stability of boron nitride nanotubes in lipid bilayers. J Phys Chem B. 2015;119:4929–4936.
  • Volgin IV, Larin SV, Lyulin AV, et al. Coarse-grained molecular-dynamics simulations of nanoparticle diffusion in polymer nanocomposites. Polymer. 2018;145:80–87.
  • Izvekov S, Violi A. A coarse-grained molecular dynamics study of carbon nanoparticle Aggregation. J Chem Theory Comput. 2006;2:504–512.
  • Izvekov S, Violi A, Voth GA. Systematic coarse-graining of nanoparticle interactions in molecular dynamics simulation. J Phys Chem B. 2005;109:17019–17024.
  • Kalra V, Escobedo F, Joo YL. Effect of shear on nanoparticle Dispersion in polymer melts: a coarse-grained molecular dynamics study. J Chem Phys. 2010;132:024901.
  • Semino R, Dürholt JP, Schmid R, et al. Multiscale modeling of the HKUST-1/poly(vinyl alcohol) interface: from an atomistic to a coarse graining approach. J Phys Chem C. 2017;121:21491–21496.
  • Kmiecik S, Gront D, Kolinski M, et al. Coarse-grained protein models and their applications. Chem Rev. 2016;116:7898–7936.
  • Scheraga HA, Khalili M, Liwo A. Protein-folding dynamics: overview of molecular simulation techniques. Annu Rev Phys Chem. 2007;58:57–83.
  • Piana S, Lindorff-Larsen K, Shaw DE. Atomistic description of the folding of a dimeric protein. J Phys Chem B. 2013;117:12935–12942.
  • Rader AJ. Coarse-grained models: getting more with less. Curr Opin Pharmacol. 2010;10:753–759.
  • Broughton JQ, Meli CA, Vashishta P, et al. Direct atomistic simulation of quartz crystal oscillators: bulk properties and nanoscale devices. Phys Rev B. 1997;56:611–618.
  • Rudd RE, Broughton JQ. Coarse-grained molecular dynamics and the atomic limit of finite elements. Phy Rev B. 1998;58:R5893–R5896.
  • Rudd RE. Coarse-grained molecular dynamics for computer modeling of nanomechanical systems. Int J Multiscale Comput Eng. 2004;2:203–220.
  • Xu T, Stewart R, Fan J, et al. Bridging crack propagation at the atomistic and mesoscopic scale for BCC-Fe with hybrid multiscale methods. Eng Fract Mech. 2016;155:166–182.
  • Nielsen SO, Lopez CF, Srinivas G, et al. Coarse grain models and the computer simulation of soft materials. J Phys Condens Matter. 2004;16:R481–R512.
  • Jiang Z, He J, Deshmukh SA, et al. Subnanometre ligand-shell asymmetry leads to Janus-like nanoparticle membranes. Nat Mater. 2015;14:912–917.
  • Bejagam KK, Singh SK, Ahn R, et al. Unraveling the conformations of backbone and side chains in thermosensitive bottlebrush polymers. Macromolecules. 2019;52:9398–9408.
  • Gorban AN, Karlin IV. Macroscopic dynamics through coarse-graining: a solvable example. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;65:026116-1–026116-5.
  • Zhang J, Behringer RP, Goldhirsch I. Coarse-graining of a physical granular system. Prog Theor Phys Suppl. 2010;184:16–30.
  • Ilg P. Macroscopic thermodynamics of flowing polymers derived from systematic coarse-graining procedure. Phys A Statis Mech Appl. 2008;387:6484–6496.
  • Chen Y, Zimmerman J, Krivtsov A, et al. Assessment of atomistic coarse-graining methods. Int J Eng Sci. 2011;49:1337–1349.
  • Noid W, Ayton G, Izvekov S, et al. The multiscale coarse- graining method. In: Voth GA, editor. Coarse-graining of condensed phase and biomolecular systems. Boca Raton (FL): CRC Press; 2008. p. 21–39.
  • Ingólfsson HI, Lopez CA, Uusitalo JJ, et al. The power of coarse graining in biomolecular simulations. Wiley Interdiscip Rev Comput Mol Sci. 2014;4:225–248.
  • Fritz D, Koschke K, Harmandaris VA, et al. Multiscale modeling of soft matter: scaling of dynamics. Phys Chem Chem Phys. 2011;13:10412.
  • Sinitskiy AV, Voth GA. Coarse-graining of proteins based on elastic network models. Chem Phys. 2013;422:165–174.
  • Brini E, Algaer EA, Ganguly P, et al. Systematic coarse-graining methods for soft matter simulations – a review. Soft Matter. 2013;9:2108–2119.
  • Monticelli L, Kandasamy SK, Periole X, et al. The Martini coarse-grained force field: extension to proteins. J Chem Theory Comput. 2008;4:819–834.
  • Bereau T, Deserno M. Generic coarse-grained model for protein folding and aggregation. J Chem Phys. 2009;130:235106.
  • Neri M, Anselmi C, Cascella M, et al. Coarse-grained model of proteins Incorporating atomistic detail of the active site. Phys Rev Lett. 2005;95:218102.
  • Marrink SJ, de Vries AH, Mark AE. Coarse grained model for semiquantitative lipid simulations. J Phys Chem B. 2004;108:750–760.
  • West B, Brown FLH, Schmid F. Membrane-protein interactions in a generic coarse-grained model for lipid bilayers. Biophys. J.. 2009;96:101–115.
  • Akkermans RLC, Briels WJ. A structure-based coarse-grained model for polymer melts. J Chem Phys. 2001;114:1020.
  • Tschöp W, Kremer K, Hahn O, et al. Simulation of polymer melts. II. From coarse-grained models back to atomistic description. Acta Polymerica. 1998;49:75–79.
  • Bejagam KK, An Y, Singh S, et al. Machine-learning enabled new insights into the coil-to-globule transition of thermosensitive polymers using a coarse-grained model. J Phys Chem Lett. 2018;9:6480–6488.
  • Arash B, Park HS, Rabczuk T. Tensile fracture behavior of short carbon nanotube reinforced polymer composites: a coarse-grained model. Compos Struct. 2015;134:981–988.
  • Arash B, Park HS, Rabczuk T. Mechanical properties of carbon nanotube reinforced polymer nanocomposites: A coarse-grained model. Compos B Eng. 2015;80:92–100.
  • Mousavi AA, Arash B, Zhuang X, et al. A coarse-grained model for the elastic properties of cross linked short carbon nanotube/polymer composites. Compos B Eng. 2016;95:404–411.
  • Demetriou MD, Johnson WL, Samwer K. Coarse-grained description of localized inelastic deformation in amorphous metals. Appl Phys Lett. 2009;94:191905.
  • Dürholt JP, Galvelis R, Schmid R. Coarse graining of force fields for metal–organic frameworks. Dalton Trans. 2016;45:4370–4379.
  • Suter JL, Anderson RL, Christopher Greenwell H, et al. Recent advances in large-scale atomistic and coarse-grained molecular dynamics simulation of clay minerals. J Mater Chem. 2009;19:2482.
  • Lamm MH, Chen T, Glotzer SC. Simulated assembly of nanostructured organic/inorganic networks. Nano Lett.. 2003;3:989–994.
  • Ferreiro-Rangel CA, Gelb LD. Computational study of uniaxial deformations in silica aerogel using a coarse-grained model. J Phys Chem B. 2015;119:8640–8650.
  • Durbin EW, Buxton GA. A coarse-grained model of targeted drug delivery from responsive polymer nanoparticles. Soft Matter. 2010;6:762.
  • Knorowski C, Burleigh S, Travesset A. Dynamics and statics of DNA-programmable nanoparticle self-assembly and crystallization. Phys Rev Lett. 2011;106:215501.
  • Jämbeck JPM, Eriksson ESE, Laaksonen A, et al. Molecular dynamics studies of liposomes as carriers for photosensitizing drugs: development, validation, and simulations with a coarse-grained model. J Chem Theory Comput. 2014;10:5–13.
  • Lemaalem M, Hadrioui N, Derouiche A, et al. Structure and dynamics of liposomes designed for drug delivery: coarse-grained molecular dynamics simulations to reveal the role of lipopolymer incorporation. RSC Adv. 2020;10:3745–3755.
  • Levitt M. A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol. 1976;104:59–107.
  • Favrin G, Irbäck A, Wallin S. Folding of a small helical protein using hydrogen bonds and hydrophobicity forces. Proteins. 2002;47:99–105.
  • Español P, Warren P. Statistical mechanics of dissipative particle dynamics. Europhys Lett (EPL). 1995;30:191–196.
  • Knap J, Ortiz M. An analysis of the quasicontinuum method. J Mech Phys Solids. 2001;49:1899–1923.
  • Tadmor EB, Ortiz M, Phillips R. Quasicontinuum analysis of defects in solids. Philos Mag A. 1996;73:1529–1563.
  • Rudd RE, Broughton JQ. Coarse-Grained molecular dynamics: nonlinear finite elements and finite temperature. Phys Rev B. 2005;72:144104-1–144104-32. doi: 10.1103/PhysRevB.72.144104.
  • Eringen AC, Cemal Eringen A, Suhubi ES. Nonlinear theory of simple micro-elastic solids—I. Int J Eng Sci. 1964;2:189–203.
  • Eringen AC, Cemal Eringen A. Simple microfluids. Int J Eng Sci. 1964;2:205–217.
  • Kirkwood JG. The statistical mechanical theory of transport processes I. general theory. J Chem Phys. 1946;14:180–201.
  • Chen Y, Lee J. Atomistic Formulation of a Multiscale field theory for Nano/micro Solids. Philos Mag. 2005;85:4095–4126.
  • Karimi-Varzaneh HA, Müller-Plathe F.. Multiscale molecular methods in applied chemistry. Top Curr Chem.. 2012;307:295–321. doi: 10.1007/128_2010_122.
  • Dallavalle M, van der Vegt NFA. Evaluation of mapping schemes for systematic coarse graining of higher alkanes. Phys Chem Chem Phys. 2017;19:23034–23042.
  • Harmandaris VA, Reith D, van der Vegt NFA, et al. Comparison between coarse-graining models for polymer systems: two mapping schemes for polystyrene. Macromol Chem Phys. 2007;208:2109–2120.
  • Fritz D, Harmandaris VA, Kremer K, et al. Coarse-grained polymer melts based on isolated atomistic chains: simulation of polystyrene of different tacticities. Macromolecules. 2009;42:7579–7588.
  • Marrink SJ, Jelger Risselada H, Yefimov S, et al. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111:7812–7824.
  • Bejagam KK, Singh S, An Y, et al. PSO-assisted development of new transferable coarse-grained water models. J Phys Chem B. 2018;122:1958–1971.
  • Zhang J, Zhang H, Wu T, et al. Comparison of implicit and explicit solvent models for the calculation of solvation free energy in organic solvents. J Chem Theory Comput. 2017;13:1034–1043.
  • Jayaraman A. 100th Anniversary of macromolecular science viewpoint: modeling and simulation of macromolecules with hydrogen bonds: challenges, successes, and opportunities. ACS Macro Lett. 2020;9:656–665.
  • Hadley KR, McCabe C. On the investigation of coarse-grained models for water: balancing computational efficiency and the retention of structural properties. J Phys Chem B. 2010;114:4590–4599.
  • Peter C, Site LD, Kremer K. Classical simulations from the atomistic to the mesoscale and back: coarse graining an azobenzene liquid crystal. Soft Matter. 2008;4:859.
  • Abrams CF, Kremer K. Effects of excluded volume and bond length on the dynamics of dense bead-spring polymer melts. J Chem Phys. 2002;116:3162–3165.
  • Riniker S, van Gunsteren WF. A simple, efficient polarizable coarse-grained water model for molecular dynamics simulations. J Chem Phys. 2011;134:084110.
  • Szklarczyk OM, Arvaniti E, van Gunsteren WF. Polarizable coarse-grained models for molecular dynamics simulation of liquid cyclohexane. J Comput Chem. 2015;36:1311–1321.
  • Zhu S, Singh S, Wilse Robinson G. A new flexible/polarizable water model. J Chem Phys. 1991;95:2791–2799.
  • Warshel A. Calculations of chemical processes in solutions. J Phys Chem. 1979;83:1640–1652.
  • Warshel A, Levitt M. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol. 1976;103:227–249.
  • Dunn NJH, Noid WG. Bottom-up coarse-grained models that accurately describe the structure, pressure, and compressibility of molecular liquids. J Chem Phys. 2015;143:243148.
  • Kauzlarić D, Meier JT, Español P, et al. Bottom-up coarse-graining of a simple graphene model: the blob picture. J Chem Phys. 2011;134:064106.
  • Lemarchand CA, Couty M, Rousseau B. Coarse-Grained simulations of cis- and trans-polybutadiene: a bottom-up approach. J Chem Phys. 2017;146:074904.
  • Murtola T, Falck E, Karttunen M, et al. Coarse-grained model for phospholipid/cholesterol bilayer employing inverse Monte Carlo with thermodynamic constraints. J Chem Phys. 2007;126:075101.
  • Wang H, Junghans C, Kremer K. Comparative atomistic and coarse-grained study of water: what do we lose by coarse-graining? Eur Phys J E Soft Matter. 2009;28:221–229.
  • Johnson ME, Head-Gordon T, Louis AA. Representability problems for coarse-grained water potentials. J Chem Phys. 2007;126:144509.
  • Cooke IR, Kremer K, Deserno M. Tunable generic model for fluid bilayer membranes. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;72:011506.
  • Honeycutt JD, Thirumalai D. Metastability of the folded states of globular proteins. Proc Natl Acad Sci U S A. 1990;87:3526–3529.
  • Noid WG. Perspective: coarse-grained models for biomolecular systems. J Chem Phys. 2013;139:090901.
  • Drouffe J, Maggs A, Leibler S. Computer simulations of self-assembled membranes. Science. 1991;254:1353–1356.
  • Loison C, Mareschal M, Kremer K, et al. Thermal fluctuations in a lamellar phase of a binary amphiphile–solvent mixture: a molecular-dynamics study. J Chem Phys. 2003;119:13138–13148.
  • Detcheverry FA, Pike DQ, Nagpal U, et al. Theoretically informed coarse grain simulations of block copolymer melts: method and applications. Soft Matter. 2009;5:4858.
  • Li H, Ha V, Lykotrafitis G. Modeling sickle hemoglobin fibers as one chain of coarse-grained particles. J Biomech. 2012;45:1947–1951.
  • Tan VBC, Deng M, Tay TE. Coarse-grained molecular modeling of composite interfaces. Materials Science Forum. 2005;502:39–44.
  • Abe H, Go N. Noninteracting local-structure model of folding and unfolding transition in globular proteins. II. Application to two-dimensional lattice proteins. Biopolymers. 1981;20:1013–1031.
  • Cieplak M, Hoang TX. Folding of proteins in go models with angular interactions. Phys A Stat Mech Appl. 2003;330:195–205.
  • Pushing the limits of structure-based models: prediction of nonglobular protein folding and fibrils Formation with go-model simulations.
  • Hills R, Brooks C. Insights from coarse-grained Gō models for protein folding and dynamics. Int J Mol Sci. 2009;10:889–905.
  • Betancourt P, Hanakata BA, Starr PZ, et al. Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials. Proc Natl Acad Sci U S A. 2015;112:2966–2971.
  • Betancourt BAP, Pazmiño Betancourt BA, Douglas JF, et al. Fragility and cooperative motion in a glass-forming polymer–nanoparticle composite. Soft Matter. 2013;9:241–254.
  • Hanakata PZ, Douglas JF, Starr FW. Local variation of fragility and glass transition temperature of ultra-thin supported polymer films. J Chem Phys. 2012;137:244901.
  • Shinoda W, DeVane R, Klein ML. Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol Simul. 2007;33:27–36.
  • Marrink SJ, Tieleman DP. Perspective on the martini model. Chem Soc Rev. 2013;42:6801–6822.
  • Baaden M, Marrink SJ. Coarse-grain modelling of protein–protein interactions. Curr Opin Struct Biol.. 2013;23:878–886.
  • Schmalhorst PS, Deluweit F, Scherrers R, et al. Overcoming the limitations of the MARTINI force field in simulations of polysaccharides. J Chem Theory Comput. 2017;13:5039–5053.
  • Wang S, Larson RG. Coarse-grained molecular dynamics simulation of tethered lipid assemblies. Soft Matter. 2013;9:480–486.
  • Liu C, Faller R. Conformational, dynamical. And tensional study of tethered bilayer lipid membranes in coarse-grained molecular simulations. Langmuir. 2012;28:15907–15915.
  • Perlmutter JD, Sachs JN. Experimental verification of lipid Bilayer structure through multi-scale modeling. Biochim Biophys Acta. 2009;1788:2284–2290.
  • Frederix PWJM, Ulijn RV, Hunt NT, et al. Virtual screening for dipeptide aggregation: toward predictive tools for peptide self-assembly. J Phys Chem Lett. 2011;2:2380–2384.
  • Lee O-S, Cho V, Schatz GC. Modeling the self-assembly of peptide amphiphiles into fibers using coarse-grained molecular dynamics. Nano Lett. 2012;12:4907–4913.
  • Baoukina S, Monticelli L, Risselada HJ, et al. The molecular mechanism of lipid monolayer collapse. Proc Natl Acad Sci U S A. 2008;105:10803–10808.
  • Pérez-Sánchez G, Gomes JRB, Jorge M. Modeling self-assembly of silica/surfactant mesostructures in the templated synthesis of nanoporous solids. Langmuir. 2013;29:2387–2396.
  • López CA, Rzepiela AJ, de Vries AH, et al. Martini coarse-grained force field: extension to carbohydrates. J Chem Theory Comput. 2009;5:3195–3210.
  • Wohlert J, Berglund LA. A coarse-grained model for molecular dynamics simulations of native cellulose. J Chem Theory Comput. 2011;7:753–760.
  • Lee H, de Vries AH, Marrink S-J, et al. A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics. J Phys Chem B. 2009;113:13186–13194.
  • Rossi G, Monticelli L, Puisto SR, et al. Coarse-graining polymers with the MARTINI force-field: Polystyrene as a Benchmark case. Soft Matter. 2011;7:698–708.
  • Hatakeyama M, Faller R. Coarse-grained simulations of ABA amphiphilic triblock copolymer solutions in thin films. Phys Chem Chem Phys. 2007;9:4662–4672.
  • Grujicic M, Pandurangan B. Mesoscale analysis of segmental dynamics in microphase-segregated polyurea. J Mater Sci. 2012;47:3876–3889.
  • Maerzke KA, Siepmann JI. Transferable potentials for phase equilibria-coarse-grain description for linear alkanes. J Phys Chem B. 2011;115:3452–3465.
  • Gao L, Fang W. Semi-bottom-up coarse graining of water based on microscopic simulations. J Chem Phys. 2011;135:184101.
  • An Y, Bejagam KK, Deshmukh SA. Development of new transferable coarse-grained models of hydrocarbons. J Phys Chem B. 2018;122:7143–7153.
  • An Y, Singh S, Bejagam KK, et al. Development of an accurate coarse-grained model of poly(acrylic acid) in explicit solvents. Macromolecules. 2019;52:4875–4887.
  • Lifson S, Stern PS. The Morse potential as a bridge between molecular structure and dynamics. In: Jortner J, Pullman B, editors. Intramolecular Dynamics. The Jerusalem symposia on quantum chemistry and biochemistry. 15. Dordrecht: Springer; 1982. p. 341–350.
  • Morse PM. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev. 1929;34:57–64.
  • Yingling YG, Garrison BJ. Coarse-grained model of the interaction of light with polymeric material: Onset of Ablation. J Phys Chem B. 2005;109:16482–16489.
  • Kremer K, Grest GS. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J Chem Phys. 1990;92:5057–5086.
  • Ouldridge TE, Louis AA, Doye JPK. Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J Chem Phys. 2011;134:085101.
  • Yates RC. The elastic character of the homopolar chemical bond. Phys Rev. 1930;36:555–562.
  • Forbes G. Sir William Thomson on molecular dynamics 1. Nature. 1885;31:601–603.
  • Halgren TA. Merck molecular force field. I. basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem. 1996;17:490–519.
  • Allinger NL, Yuh YH, Lii JH. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J Am Chem Soc. 1989;111:8551–8566.
  • Allinger NL, Chen K, Lii J-H. An improved force field (MM4) for saturated hydrocarbons. J Comput Chem. 1996;17:642–668.
  • Li G, Shen H, Zhang D, et al. Coarse-grained modeling of nucleic acids using anisotropic gay–berne and electric multipole potentials. J Chem Theory Comput. 2016;12:676–693.
  • Zou J, Liang W, Zhang S. Coarse-grained molecular dynamics modeling of DNA-carbon nanotube complexes. Int J Numer Methods Eng. 2010;83:968–985.
  • Shih AY, Arkhipov A, Freddolino PL, et al. Coarse grained protein−lipid model with application to lipoprotein particles. J Phys Chem B. 2006;110:3674–3684.
  • Schlick T. Molecular modeling and simulation: An interdisciplinary guide. Vol. 21. New York: Springer Verlag; 2010. p. 425–517.
  • Bulacu M, Goga N, Zhao W, et al. Improved angle potentials for coarse-grained molecular dynamics simulations. J Chem Theory Comput. 2013;9:3282–3292.
  • MacKerell AD, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102:3586–3616.
  • Imamura K, Yamamoto T, Sato H. Coarse-grained modeling of nanocube self-assembly system and transition network analyses. Chem Phys Lett. 2020;742:137135.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.
  • Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–1802.
  • Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91:43–56.
  • Pearlman DA, Case DA, Caldwell JW, et al. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun. 1995;91:1–41.
  • Brooks BR, Bruccoleri RE, Olafson BD, et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem. 1983;4:187–217.
  • Prasitnok K, Wilson MR. A coarse-grained model for polyethylene glycol in bulk water and at a water/air interface. Phys Chem Chem Phys. 2013;15:17093–17104.
  • Fukunaga H, Takimoto J-I, Doi M. A coarse-graining procedure for flexible polymer chains with bonded and nonbonded interactions. J Chem Phys. 2002;116:8183–8190.
  • Engin O, Villa A, Peter C, et al. A challenge for peptide coarse graining: transferability of fragment-based models. Macromol Theory Simul. 2011;20:451–465.
  • Spiga E, Alemani D, Degiacomi MT, et al. Electrostatic-consistent coarse-grained potentials for molecular simulations of proteins. J Chem Theory Comput. 2013;9:3515–3526.
  • Nakamura H. Roles of electrostatic interaction in proteins. Q. Rev. Biophys.. 1996;29:1–90.
  • Wang X, Ramírez-Hinestrosa S, Dobnikar J, et al. The Lennard-Jones potential: when (not) to use it. Phys Chem Chem Phys. 2020;22:10624–10633.
  • On the determination of molecular fields.—I. From the variation of the viscosity of a gas with temperature. Proc R Soc London A Containing Papers Math Phys Charact. 1924;106:441–462.
  • The classical equation of state of gaseous helium, neon and argon. Proc R Soc London Ser A Math Phys Sci. 1938;168:264–283.
  • Meyer H, Biermann O, Faller R, et al. Coarse graining of nonbonded inter-particle potentials using automatic simplex optimization to fit structural properties. J Chem Phys. 2000;113:6264–6275.
  • Xia Z, Bell DR, Shi Y, et al. RNA 3d structure prediction by using a coarse-grained model and experimental data. J Phys Chem B. 2013;117:3135–3144.
  • Chiu S-W, Scott HL, Jakobsson E. A coarse-grained model based on Morse potential for water and N-alkanes. J Chem Theory Comput. 2010;6:851–863.
  • Zhang N, Zhang P, Kang W, et al. Parameterizing the Morse potential for coarse-grained modeling of Blood Plasma. J Comput Phys. 2014;257:726–736.
  • Golubkov PA, Ren P. Generalized coarse-grained model based on point multipole and Gay-Berne potentials. J Chem Phys. 2006;125:64103.
  • Xu P, Shen H, Yang L, et al. Coarse-grained simulations for organic molecular liquids based on Gay-Berne and electric multipole potentials. J Mol Model. 2013;19:551–558.
  • Jasper AW, Miller JA. Lennard–Jones parameters for combustion and chemical kinetics modeling from full-dimensional intermolecular potentials. Combust Flame. 2014;161:101–110.
  • Nielsen SO, Lopez CF, Srinivas G, et al. A coarse grain model for N-alkanes parameterized from surface tension data. J Chem Phys. 2003;119:7043–7049.
  • Lorentz HA. Ueber Die Anwendung Des Satzes Vom Virial in Der Kinetischen Theorie Der Gase. Ann Phys. 1881;248:127–136.
  • Kong CL. Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential. J Chem Phys. 1973;59:2464–2467.
  • Waldman M, Hagler AT. New combining rules for rare gas van Der Waals parameters. J Comput Chem. 1993;14:1077–1084.
  • Delhommelle J, Millié P. Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation. Mol Phys. 2001;99:619–625.
  • Forsman J, Woodward CE. Limitations of the Derjaguin approximation and the Lorentz−Berthelot mixing rule. Langmuir. 2010;26:4555–4558.
  • Hess B, Holm C, van der Vegt N. Modeling multibody effects in ionic solutions with a concentration dependent dielectric permittivity. Phys Rev Lett.. 2006;96:147801-1–147801-4.
  • Rzepiela AJ, Louhivuori M, Peter C, et al. Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Phys Chem Chem Phys. 2011;13:10437–10448.
  • Makowski M, Czaplewski C, Liwo A, et al. Potential of mean force of association of large hydrophobic particles: toward the nanoscale limit. J Phys Chem B. 2010;114:993–1003.
  • Wang Y, Noid WG, Liu P, et al. Effective force coarse-graining. Phys Chem Chem Phys. 2009;11:2002.
  • Brini E, Marcon V, van der Vegt NFA. Conditional reversible work method for molecular coarse graining applications. Phys Chem Chem Phys. 2011;13:10468–10474.
  • Deichmann G, Marcon V, van der Vegt NFA. Bottom-up derivation of conservative and dissipative interactions for coarse-grained molecular liquids with the conditional reversible work method. J Chem Phys. 2014;141:224109.
  • Brini E, van der Vegt NFA. Chemically transferable coarse-grained potentials from conditional reversible work calculations. J Chem Phys. 2012;137:154113.
  • Henderson RL. A uniqueness theorem for fluid pair correlation functions. Phys Lett A. 1974;49:197–198.
  • Moore TC, Iacovella CR, McCabe C. Derivation of coarse-grained potentials via multistate iterative Boltzmann inversion. J Chem Phys. 2014;140:224104.
  • Agrawal V, Arya G, Oswald J. Simultaneous iterative Boltzmann inversion for coarse-graining of polyurea. Macromolecules. 2014;47:3378–3389.
  • Wang Q, Keffer DJ, Nicholson DM. A coarse-grained model for polyethylene glycol polymer. J Chem Phys. 2011;135:214903.
  • Schaettle K, Ruiz Pestana L, Head-Gordon T, et al. A structural coarse-grained model for clays using simple iterative Boltzmann Inversion. J Chem Phys. 2018;148:222809.
  • Reith D, Pütz M, Müller-Plathe F. Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem. 2003;24:1624–1636.
  • Korolev N, Luo D, Lyubartsev A, et al. A coarse-grained DNA model parameterized from atomistic simulations by inverse Monte Carlo. Polymers. 2014;6:1655–1675.
  • Mirzoev A, Lyubartsev AP. Systematic implicit solvent coarse graining of dimyristoylphosphatidylcholine lipids. J Comput Chem. 2014;35:1208–1218.
  • Lyubartsev AP, Laaksonen A. Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995;52:3730–3737.
  • Lyubartsev A, Mirzoev A, Chen L, et al. Systematic coarse-graining of molecular models by the Newton inversion method. Faraday Discuss. 2010;144:43–56. discussion 93–110, 467–481.
  • Naômé A, Laaksonen A, Vercauteren DP. Correction to a solvent-mediated coarse-grained model of DNA derived with the systematic Newton inversion method. J Chem Theory Comput. 2015;11:2889.
  • Grochola G, Russo SP, Snook IK. On fitting a Gold embedded atom method potential using the force matching method. J Chem Phys. 2005;123:204719.
  • Kalligiannaki E, Harmandaris V, Katsoulakis MA, et al. The geometry of generalized force matching and related information metrics in coarse-graining of molecular systems. J Chem Phys. 2015;143:084105.
  • Hone TD, Izvekov S, Voth GA. Fast centroid molecular dynamics: a force-matching approach for the predetermination of the effective centroid forces. J Chem Phys. 2005;122:54105.
  • Ercolessi F, Adams JB. Interatomic potentials from first-principles calculations: the force-matching method. Europhys Lett (EPL). 1994;26:583–588.
  • Takada S. Coarse-grained molecular simulations of large biomolecules. Curr Opin Struct Biol. 2012;22:130–137.
  • Liu P, Izvekov S, Voth GA. Multiscale coarse-graining of monosaccharides. J Phys Chem B. 2007;111:11566–11575.
  • Deng L, Wang Y, Ou-yang Z-C. Concentration and temperature dependences of polyglutamine aggregation by multiscale coarse-graining molecular dynamics simulations. J Phys Chem B. 2012;116:10135–10144.
  • Rosch TW, Brennan JK, Izvekov S, et al. Exploring the ability of a multiscale coarse-grained potential to describe the stress-strain response of glassy polystyrene. Phys Rev E Stat Nonlin Soft Matter Phys. 2013;87:042606.
  • Izvekov S, Voth GA. A multiscale coarse-graining method for biomolecular systems. J Phys Chem B. 2005;109:2469–2473.
  • Noid WG, Liu P, Wang Y, et al. The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models. J Chem Phys. 2008;128:244115.
  • Das A, Andersen HC. The multiscale coarse-graining method. III. A test of pairwise additivity of the coarse-grained potential and of new basis functions for the variational calculation. J Chem Phys. 2009;131:034102.
  • Krishna V, Noid WG, Voth GA. The multiscale coarse-graining method. IV. Transferring coarse-grained potentials between temperatures. J Chem Phys. 2009;131:024103.
  • Das A, Andersen HC. The multiscale coarse-graining method. V. Isothermal-isobaric ensemble. J Chem Phys. 2010;132:164106.
  • Larini L, Lu L, Voth GA. The multiscale coarse-graining method. VI. Implementation of three-body coarse-grained potentials. J Chem Phys. 2010;132:164107.
  • Lu L, Voth GA. The multiscale coarse-graining method. VII. Free energy decomposition of coarse-grained effective potentials. J Chem Phys. 2011;134:224107.
  • Das A, Andersen HC. The multiscale coarse-graining method. VIII. Multiresolution hierarchical basis functions and basis function selection in the construction of coarse-grained force fields. J Chem Phys. 2012;136:194113.
  • Das A, Andersen HC. The multiscale coarse-graining method. IX. A general method for construction of three body coarse-grained force fields. J Chem Phys. 2012;136:194114.
  • Das A, Lu L, Andersen HC, et al. The multiscale coarse-graining method. X. Improved algorithms for constructing coarse-grained potentials for molecular systems. J Chem Phys. 2012;136:194115.
  • Cao Z, Voth GA. The multiscale coarse-graining method. XI. Accurate interactions based on the centers of charge of coarse-grained sites. J Chem Phys. 2015;143:243116.
  • Mori H. Transport, collective motion, and Brownian motion. Prog Theor Phys. 1965;33:423–455.
  • Zwanzig R. Nonequilibrium statistical mechanics. New York: Oxford University Press; 2001.
  • Li Z, Bian X, Yang X, et al. A comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann Inversion vs. stochastic parametric optimization. J Chem Phys. 2016;145:044102.
  • Español P, Zúñiga I. Obtaining fully dynamic coarse-grained models from MD. Phys Chem Chem Phys. 2011;13:10538–10545.
  • Lei H, Yang X, Li Z, et al. Systematic parameter inference in stochastic mesoscopic modeling. J Comput Phys. 2017;330:571–593.
  • Shell MS. The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J Chem Phys. 2008;129:144108.
  • Bilionis I, Zabaras N. A stochastic optimization approach to coarse-graining using a relative-entropy framework. J Chem Phys. 2013;138:044313.
  • Moore TC, Iacovella CR, McCabe C.. Development of a coarse-grained water forcefield via multistate iterative Boltzmann inversion. Found Mol Model Simul. 2016: 37–52.
  • Rühle V, Junghans C, Lukyanov A, et al. Versatile object-oriented toolkit for coarse-graining applications. J Chem Theory Comput. 2009;5:3211–3223.
  • Bejagam KK, Singh S, An Y, et al. Machine-learned coarse-grained models. J Phys Chem Lett. 2018;9:4667–4672.
  • Leonarski F, Trylska J. RedMDStream: parameterization and simulation toolbox for coarse-grained molecular dynamics models. Biophys J. 2015;108:1843–1847.
  • Betz RM, Walker RC. Paramfit: automated optimization of force field parameters for molecular dynamics simulations. J Comput Chem. 2015;36:79–87.
  • Guenza M. Thermodynamic consistency and other challenges in coarse-graining models. Eur Phys J Special Topics. 2015;224:2177–2191.
  • Guenza MG, Dinpajooh M, McCarty J, et al. Accuracy, transferability, and efficiency of coarse-grained models of molecular liquids. J Phys Chem B. 2018;122:10257–10278.
  • Carbone P, Varzaneh HAK, Chen X, et al. Transferability of coarse-grained force fields: the polymer case. J Chem Phys. 2008;128:064904-1–064904-11.
  • Dunn NJH, Foley TT, Noid WG. Van Der Waals perspective on coarse-graining: progress toward solving representability and transferability problems. Acc Chem Res. 2016;49:2832–2840.
  • Louis AA. Beware of density dependent pair potentials. J Phys Condens Matter. 2002;14:9187–9206.
  • Jin J, Pak AJ, Voth GA. Understanding missing entropy in coarse-grained systems: addressing issues of representability and transferability. J Phys Chem Lett. 2019;10:4549–4557.
  • Wagner JW, Dama JF, Durumeric AEP, et al. On the representability problem and the physical meaning of coarse-grained models. J Chem Phys. 2016;145:044108.
  • Ganguly P, van der Vegt NFA. Representability and transferability of Kirkwood–buff iterative Boltzmann inversion models for multicomponent aqueous systems. J Chem Theory Comput. 2013;9:5247–5256.
  • Potter TD, Tasche J, Wilson MR. Assessing the transferability of common Top-down and bottom-up coarse-grained molecular models for molecular mixtures. Phys Chem Chem Phys. 2019;21:1912–1927.
  • Yelon A, Movaghar B. Microscopic Explanation of the compensation (Meyer-Neldel) Rule. Phys Rev Lett. 1990;65:618–620.
  • Lumry R, Rajender S. Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers. 1970;9:1125–1227.
  • Krug RR, Hunter WG, Grieger RA. Statistical interpretation of enthalpy–entropy compensation. Nature. 1976;261:566–567.
  • Xia W, Song J, Jeong C, et al. Energy-renormalization for achieving temperature transferable coarse-graining of polymer dynamics. Macromolecules. 2017;50:8787–8796.
  • Xia W, Hansoge NK, Xu W-S, et al. Energy renormalization for coarse-graining polymers having different segmental structures. Sci Adv. 2019;5:eaav4683.
  • Xia W, Song J, Hansoge NK, et al. Energy renormalization for coarse-graining the dynamics of a model glass-forming liquid. J Phys Chem B. 2018;122:2040–2045.
  • Guenza MG. Thermodynamically consistent coarse graining of polymers. In: Papoian GA, editor. Coarse-grained modeling of biomolecules. Edited by Garegin A. Papoian. Boca Raton (FL): CRC Press; 2017. p. 27–66.
  • Clark AJ, McCarty J, Lyubimov IY, et al. Thermodynamic consistency in variable-level coarse graining of polymeric liquids. Phys Rev Lett. 2012;109:168301.
  • Dinpajooh M, Guenza MG. Thermodynamic consistency in the structure-based integral equation coarse-grained method. Polymer. 2017;117:282–286.
  • Clark AJ, McCarty J, Guenza MG. Effective potentials for representing polymers in melts as chains of interacting soft particles. J Chem Phys. 2013;139:124906.
  • Peng J, Yuan C, Ma R, et al. Backmapping from multiresolution coarse-grained models to atomic structures of large biomolecules by restrained molecular dynamics simulations using Bayesian inference. J Chem Theory Comput. 2019;15:3344–3353.
  • Deshmukh SA, Solomon LA, Kamath G, et al. Water ordering controls the dynamic equilibrium of micelle–fibre formation in self-assembly of peptide amphiphiles. Nat Commun. 2016;7:12367.
  • Kotelyanskii M, Wagner NJ, Paulaitis ME. Building large amorphous polymer structures: atomistic simulation of glassy polystyrene. Macromolecules. 1996;29:8497–8506.
  • Chen X, Carbone P, Santangelo G, et al. Backmapping coarse-grained polymer models under sheared nonequilibrium conditions. Phys Chem Chem Phys. 2009;11:1977–1988.
  • Fogarty JC, Chiu S-W, Kirby P, et al. Automated optimization of water–water interaction parameters for a coarse-grained model. J Phys Chem B. 2014;118:1603–1611.
  • Reith D, Meyer H, Müller-Plathe F. Mapping atomistic to coarse-grained polymer models using automatic simplex optimization to fit structural properties. Macromolecules. 2001;34:2335–2345.
  • Hülsmann M, Köddermann T, Vrabec J, et al. GROW: a gradient-based optimization workflow for the automated development of molecular models. Comput Phys Commun. 2010;181:499–513.
  • Pasquali S, Derreumaux P. HiRE-RNA: a high resolution coarse-grained energy model for RNA. J Phys Chem B. 2010;114:11957–11966.
  • Mostaghim S, Hoffmann M, Konig PH, et al. Molecular force field parametrization using multi-objective evolutionary algorithms. Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).
  • Leonarski F, Trovato F, Tozzini V, et al. Evolutionary algorithm in the optimization of a coarse-grained force field. J Chem Theory Comput. 2013;9:4874–4889.
  • Van Dantzig D. General procedures of empirical science. Synthese. 1947;5:441–455.
  • Wan M, Song J, Li W, et al. Development of coarse-grained force field by combining multilinear interpolation technique and simplex algorithm. J Comput Chem. 2020;41:814–829.
  • Norrby P-O, Liljefors T. Automated molecular mechanics parameterization with simultaneous utilization of experimental and quantum mechanical data. J Comput Chem. 1998;19:1146–1166.
  • Savelyev A, Papoian GA. Molecular renormalization group coarse-graining of polymer chains: application to double-stranded DNA. Biophys J. 2009;96:4044–4052.
  • Parejo JA, Ruiz-Cortés A, Lozano S, et al. Metaheuristic optimization frameworks: a survey and benchmarking. Soft comput. 2012;16:527–561.
  • Ivanov MV, Talipov MR, Timerghazin QK. Genetic algorithm optimization of point charges in force field development: challenges and insights. J Phys Chem A. 2015;119:1422–1434.
  • Leonarski F, Trovato F, Tozzini V, et al. Genetic algorithm optimization of force field parameters: application to a coarse-grained model of RNA. In: Evolutionary computation, machine learning and data mining in bioinformatics. Berlin, Heidelberg: Springer; 2011. p. 147–152.
  • Maupetit J, Tuffery P, Derreumaux P. A coarse-grained protein force field for folding and structure prediction. Proteins. 2007;69:394–408.
  • Brown WM, Thompson AP, Schultz PA. Efficient hybrid evolutionary optimization of interatomic potential models. J Chem Phys. 2010;132:024108.
  • Makarov DE, Metiu H. Fitting potential-energy surfaces: a search in the function space by directed genetic programming. J Chem Phys. 1998;108:590–598.
  • Duan K, He Y, Li Y, et al. Machine-learning assisted coarse-grained model for epoxies over wide ranges of temperatures and cross-linking degrees. Mater Des. 2019;183:108130.
  • Yang S, Cui Z, Qu J. A coarse-grained model for epoxy molding compound. J Phys Chem B. 2014;118:1660–1669.
  • An Y, Bejagam KK, Deshmukh SA. Development of transferable nonbonded interactions between coarse-grained hydrocarbon and water models. J Phys Chem B. 2019;123:909–921.
  • Bejagam KK, Singh S, Deshmukh SA. Development of non-bonded interaction parameters between graphene and water using particle swarm optimization. J Comput Chem. 2018;39:721–734.
  • Conway O, An Y, Bejagam KK, et al. Development of transferable coarse-grained models of amino acids. Mol Syst Design Eng. 2020: 675–685.
  • Lemke T, Peter C. Neural network based prediction of conformational free energies – a new route toward coarse-grained simulation models. J Chem Theory Comput. 2017;13:6213–6221.
  • Zhang L, Han J, Wang H, et al. Constructing coarse-grained models via deep neural networks. J Chem Phys. 2018;149:034101.
  • Wang J, Olsson S, Wehmeyer C, et al. Machine learning of coarse-grained molecular dynamics force fields. ACS Cent Sci. 2019;5:755–767.
  • Cheng B, Titterington DM. Neural networks: a review from a statistical perspective. Stat Sci. 1994;9:2–30.
  • Chan H, Cherukara MJ, Narayanan B, et al. Machine learning coarse grained models for water. Nat Commun. 2019;10:379.
  • McDonagh JL, Shkurti A, Bray DJ, et al. Utilizing machine learning for efficient parameterization of coarse grained molecular force fields. J Chem Inf Model. 2019;59:4278–4288.
  • John ST, Csányi G. Many-body coarse-grained interactions using Gaussian approximation potentials. J Phys Chem B. 2017;121:10934–10949.
  • Noé F, Tkatchenko A, Müller K-R, et al. Machine learning for molecular simulation. Annu Rev Phys Chem. 2020;71:361–390.
  • Schütt KT, Sauceda HE, Kindermans P-J, et al. Schnet – a deep learning architecture for molecules and materials. J Chem Phys. 2018;148:241722.
  • Han J, Zhang L, Car R, et al. Deep potential: a general representation of a many-body potential energy surface. Commun Comput Phys. 2018;23:629–639.
  • Dral PO, Owens A, Yurchenko SN, et al. Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels. J Chem Phys. 2017;146:244108.
  • An Y, Deshmukh SA. Machine learning approach for accurate backmapping of coarse-grained models to all-atom models. Chem Commun. 2020;56:9312–9315.
  • Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks.
  • Shi Y, Eberhart R. A modified particle swarm optimizer. 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).
  • Kennedy J. The particle swarm: social adaptation of knowledge. Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC ‘97).
  • Lee YS, Shamsuddin SM, Hamed HN. Bounded PSO Vmax function in neural network learning. 2008 Eighth International Conference on Intelligent Systems Design and Applications, 2008.
  • Baldi P. Gradient descent learning algorithm overview: a general dynamical systems perspective. IEEE Trans Neural Networks. 1995;6:182–195.
  • Varfis, A. An introduction to neural networks. In: Heidrich D, Grossetie JC, editors. Computing with T.Node parallel architecture. Dordrecht: Springer, 1991; pp. 197–211.
  • Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods. 2000;43:3–31.
  • Sathya R, Abraham A. Comparison of supervised and unsupervised learning algorithms for pattern classification. Int J Adv Res Artif Intell. 2013;2:34–38.
  • Hocine S, Li M-H. Thermoresponsive self-assembled polymer colloids in water. Soft Matter. 2013;9:5839.
  • Deguchi S, Tsujii K. Supercritical water: a fascinating medium for soft matter. Soft Matter. 2007;3:797.
  • Pradipkanti L, Satapathy DK. Water desorption from a confined biopolymer. Soft Matter. 2018;14:2163–2169.
  • Pioch D. Expanding the panel of oleochemicals by altering the fatty acid hydrocarbon backbone. Oléagineux Corps gras Lipides. 2003;10:365–369.
  • Cooper W. Hydrocarbon polymers—perspectives. Eur Polym J. 1975;11:833–839.
  • Li X, ShamsiJazeyi H, Pesek SL, et al. Thermoresponsive PNIPAAM bottlebrush polymers with tailored side-chain length and end-group structure. Soft Matter. 2014;10:2008–2015.
  • E. I. du Pont de Nemours & Company. Industrial chemicals department. Properties and uses of dimethylformamide (DMF); 1976.
  • Das K, Bose K, Kundu KK. Ion-solvent interactions in dimethylformamide water mixtures. Electrochim. Acta. 1981;26:479–485.
  • Yevlampieva N, Dobrodumov A, Nazarova O, et al. Hydrodynamic behavior of dendrigraft polylysines in water and dimethylformamide. Polymers. 2012;4:20–31.
  • Jain K, Vedarajan R, Watanabe M, et al. Tunable LCST behavior of poly(N-isopropylacrylamide/ionic liquid) copolymers. Polym Chem. 2015;6:6819–6825.
  • Baranowska-Korczyc A, Stelmach E, Paterczyk B, et al. Ultrasmall self-assembly poly(N-isopropylacrylamide-butyl acrylate) (polyNIPAM-BA) thermoresponsive nanoparticles. J Colloid Interface Sci. 2019;542:317–324.
  • Samah A, Heard NH, M C. The effects of topically applied polyNIPAM-based nanogels and their monomers on skin cyclooxygenase expression, ex vivo. Nanotoxicology. 2014;8:100–106.
  • Deshmukh S, Mooney DA, McDermott T, et al. Molecular modeling of thermo-responsive hydrogels: observation of lower critical solution temperature. Soft Matter. 2009;5:1514.
  • Gennes PGD, De Gennes PG. Conformation of a polymer chain in certain mixed solvents. Journal de Physique Lettres. 1976;37:59–61.
  • Antoniou E, Alexandridis P. Polymer conformation in mixed aqueous-polar organic solvents. Eur Polym J. 2010;46:324–335.
  • Lyubimov I, Wessels MG, Jayaraman A. Molecular dynamics simulation and PRISM theory study of assembly in solutions of amphiphilic bottlebrush block copolymers. Macromolecules. 2018;51:7586–7599.
  • Sadovnikova MS, Belikov VM. Industrial applications of amino-acids. Russian Chem Rev. 1978;47:199–212.
  • Chaitow L. Amino acids in therapy: a guide to the therapeutic application of protein constituents. Rochester (VT): Inner Traditions / Bear & Co; 1985.
  • Barrett F. Amino acids: biochemistry and applications. 2017.
  • Kaur K, Wang Y, Matson JB. Linker-regulated HS release from aromatic peptide amphiphile hydrogels. Biomacromolecules. 2020;21:1171–1178.
  • Das S, Verma K, Dubey VK, et al. Fabrication of nanoparticles from a synthesized peptide amphiphile as a versatile therapeutic cargo for high antiproliferative activity in tumor cells. Bioorg Chem. 2020;94:103440.
  • Saunders MG, Voth GA. Coarse-graining methods for computational biology. Annu Rev Biophys. 2013;42:73–93.
  • Hagan MF, Zandi R. Recent advances in coarse-grained modeling of virus assembly. Curr Opin Virol. 2016;18:36–43.
  • Machado MAR, González HC, Pantano S. MD simulations of viruslike particles with supra CG Solvation affordable to desktop computers. J Chem Theory Comput. 2017;13:5106–5116.
  • Rabani E, Reichman DR, Geissler PL, et al. Drying-mediated self-assembly of NANOPARTICLES. Nature. 2003;426:271–274.
  • Kletenik-Edelman O, Sztrum-Vartash CG, Rabani E. Coarse-grained lattice models for drying-mediated self-assembly of nanoparticles. J Mater Chem. 2009;19:2872.
  • Yasuda S, Yamamoto R. A model for hybrid simulations of molecular dynamics and computational fluid dynamics. Phys Fluids. 2008;20:113101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.