297
Views
1
CrossRef citations to date
0
Altmetric
Articles

On industrial applications of molecular simulations

ORCID Icon &
Pages 846-856 | Received 19 May 2020, Accepted 21 Sep 2020, Published online: 06 Oct 2020

References

  • Frenkel D, Smit B. Understanding molecular simulation. San Diego, CA: Academic Press; 2002.
  • Ewen JP, Heyes DM, Dini D. Advances in nonequilibrium molecular dynamics simulations of lubricants and additives. Friction. 2018;6:349.
  • McCabe C, Cui S, Cummings PT, et al. Examining the rheology of 9-octylheptadecane to giga-pascal pressures. J Chem Phys. 2001;114:1887.
  • Larsen RG, Zhou Q, Shaanbhag S, et al. Advances in modeling of polymer melt rheology. AIChE J. 2007;53:542.
  • Orsi M. In: Azevedo HS, editor. Self-assembling biomaterials: molecular design, characterization and application in biology and medicine. Cambridge (UK): Woodhead Publ. Ltd.; 2018.
  • Hall CK. Thermodynamic and kinetic origins of Alzheimer's and related diseases: a chemical engineer's perspective. AIChE J. 2008;54:1956.
  • Hospital A, Goni JR, Orozco M, et al. Molecular dynamics simulations: advances and applications. Adv Appl Bioinfor Chem. 2015;8:37.
  • Sakkiah S, Kusko R, Tong W, et al. Applications of molecular dynamics simulations in computational toxicology. In: Hong H, editor. Challenges and advances in computational toxicology. Vol. 30, Cham: Springer; 2019, p. 181.
  • Ungerer P, Tavitian B, Boutin A. Applications of molecular simulation in the oil and gas industry: Monte Carlo methods. Paris: Editions Technip; 2005.
  • Jirsak O, Sanetrnik F, Lukas D, et al. A method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. Patent WO 205024101. 2005.
  • Formhals A. Process and apparatus for preparing artificial threads. US Patent 1975504. 1934.
  • Hohman MM, Shin M, Rutledge G, et al. Electrospinning and electrically forced jets. I Stab Theor Phys Fluids. 2001;13:2201.
  • Feng JJ. The stretching of an electrifed non-Newtonian jet: a model for electrospinning. Phys Fluids. 2002;14:3912.
  • Aerov AA. Why the water bridge does not collapse. Phys Rev E. 2011;84:036314.
  • Kong CS, Yoo WS, Jo NG, et al. Electrospinning mechanism for producing nanoscale polymer fibers. J Macromol Sci B. 2010;49:122.
  • Jirsák J, Moučka F, Nezbeda I. Insight into electrospinning via molecular simulations. Ind Eng Chem Res. 2014;53:8257.
  • Jirsák J, Moučka F, Škvor J, et al. Aqueous electrolyte surfaces in strong electric fields: molecular insight into nanoscale jets and bridges. Mol Phys. 2014;113:848.
  • Bekker H, Berendsen HJC, Dijkstra EJ, et al. A parallel computer for molecular dynamics simulations. In: de Groot RA and Nadrchal J, editors. Physics computing. Singapore: World Scientific; 1993.
  • Fuchs EC, Woisetschlager J, Gatterer K, et al. The floating water bridge. J Phys D Appl Phys. 2007;40:6112.
  • Skinner LB, Benmorea CJ, Shyama B, et al. Structure of the floating water bridge and water in an electric field. Proc Natl Acad Sci. 2012;109:16463.
  • Guiochon G. Preparative liquid chromatography. J Chromatogr A. 2002;965:129.
  • Keith JM, Larrow JF, Jacobsen EJ. Practical considerations in kinetic resolution reactions. Adv Synth Catal. 2001;343:5.
  • Rajendran A, Paredes G, Mazzotti M. Enantioseparation of flurbiprofen on amylose-derived chiral stationary phase by supercritical fluid chromatography. J Chromatogr A. 2009;1216:709.
  • Núñez Agüero CM, Escobar L, Díaz D, et al. Chiral discrimination of ibuprofen isomers in beta-cyclodextrin inclusion complexes: experimental (NMR) and theoretical (MD, MM/GBSA) studies. Tetrahedron. 2006;62:4162.
  • Škvára J, Nezbeda I. Molecular dynamics study of racemic mixtures: solutions of ibuprofen and β-cyclodextrin in methanol. J Mol Liq. 2018;265:791.
  • Malde AK, Zuo L, Breeze M, et al. An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theor Comput. 2011;7:4026.
  • Schmid N, Eichenberger AP, Choutko A, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J. 2011;40:843.
  • Škvára J, Nezbeda I, Izák P. Molecular dynamics study of racemic mixtures. II. temperature dependence of the separation of ibuprofen racemic mixture with β-cyclodextrin in methanol solvent. J Mol Liq. 2020;302:112575.
  • Kumar R, Schmidt JR, Skinner JL. Hydrogen bonding definitions and dynamics in liquid water. J Chem Phys. 2007;126:204107.
  • Maginn EJ, Bell AT, Theodorou N. Transport diffusivity of methane in silicalite from equilibrium and nonequilibrium simulations. J Phys Chem. 1993;97:4173.
  • Arya G, Chang H-C, Maginn EJ. A critical comparison of equilibrium, non-equilibrium and boundary-driven molecular dynamics techniques for studying transport in microporous materials. J Chem Phys. 2001;115:8112.
  • Liang Z, Tsai HL. Diffusion in Lennard–Jones fluids using dual control volume grand canonical molecular dynamics simulation (DCV-GCMD). Microfluid Nanofluid. 2012;13:289.
  • Sokhan VP, Nicholson D, Quirke N. Fluid flow in nanopores: accurate boundary conditions for carbon nanotubes. J Chem Phys. 2002;117:8531.
  • Heffelfinger GS, van Swol F. A method to generate pressure gradients for molecular simulation of pressure-driven flows in nanochannels. J Chem Phys. 1994;100:7548.
  • MacElroy JMD. Nonequilibrium molecular dynamics simulation of diffusion and flow in thin microporous membranes. J Chem Phys. 1994;101:5274.
  • Thompson AP, Ford DM, Heffelfinger GS. Direct molecular simulation of gradient-driven diffusion. J Chem Phys. 1998;109:6406.
  • Thompson AP, Heffelfinger GS. Direct molecular simulation of gradient-driven diffusion of large molecules using constant pressure. J Chem Phys. 1999;110:10693.
  • Xu L, Tsotsis TT, Sahimi M. Nonequilibrium molecular dynamics simulation of transport and separation of gases in carbon nanopores. I. basic results. J Chem Phys. 1999;111:3252.
  • Martin MG, Thompson AP, Nenoff TM. Effect of pressure, membrane thickness, and placement of control volumes on the flux of methane through thin silicalite membranes: A dual control volume grand canonical molecular dynamics study. J Chem Phys. 2001;114:7174.
  • Cracknell RF, Nicholson D, Quirke N. Direct molecular dynamics simulation of flow down a chemical potential gradient in a slit-shaped micropore. Phys Rev Lett. 1995;74:2463.
  • Liu B, Wu R, Baimova JA, et al. Molecular dynamics study of pressure-driven water transport through graphene bilayers. Phys Chem Chem Phys. 2016;18:1886.
  • To QD, Pham TT, Lauriat G, et al. Molecular dynamics simulations of pressure-driven flows and comparison with acceleration-driven flows. Adv Mech Eng. 2012, DOI:10.1155/2012/580763.
  • Annual Report on project No. 18-05484S (Czech Science Foundation)
  • Nezbeda I, Jirsak J, Moucka F, et al. Surfaces of aqueous solutions in strong electric field. Molecular insight into bridging and jetting phenomena. Cond Matt Phys. 2015;18:13602.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.