2,937
Views
25
CrossRef citations to date
0
Altmetric
Articles

Recent advances in the continuous fractional component Monte Carlo methodology

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 804-823 | Received 10 Jun 2020, Accepted 08 Sep 2020, Published online: 16 Oct 2020

References

  • Smith JM, Van Ness HC, Abbott MM. Introduction to chemical engineering thermodynamics. 7th ed. New York: McGraw-Hill; 2005.
  • Sandler SI. Chemical, biochemical, and engineering thermodynamics. 4th ed. Hoboken (NJ): John Wiley & Sons; 2006.
  • Deiters U, Schneider G. High pressure phase equilibria: experimental methods. Fluid Phase Equilib. 1986;29:145–160.
  • Alvarado V, Manrique E. Enhanced oil recovery: an update review. Energies. 2010;3:1529–1575.
  • Bui M, Adjiman CS, Bardow A, et al. Carbon capture and storage (CCS): the way forward. Energy Environ Sci. 2018;11:1062–1176.
  • Moran MJ, Shapiro HN. Fundamentals of engineering thermodynamics. 5th ed. West Sussex: John Wiley & Sons; 2006.
  • Erisman JW, Sutton MA, Galloway J, et al. How a century of ammonia synthesis changed the world. Nat Geosci. 2008;1:636–639.
  • Bouwman P. Electrochemical hydrogen compression (EHC) solutions for hydrogen infrastructure. Fuel Cells Bulletin. 2014;2014:12–16.
  • Adolf J, Balzer C, Louis J. Energy of the future? Sustainable mobility through fuel cells and H2. Hamburg: Shell Deutschland Oil GmbH, Wuppertal Institut; 2017. DOI:10.13140/RG.2.2.31848.57604.
  • Peper S, Fonseca JM, Dohrn R. High-pressure fluid-phase equilibria: trends, recent developments, and systems investigated (2009–2012). Fluid Phase Equilib. 2019;484:126–224.
  • Fonseca JM, Dohrn R, Peper S. High-pressure fluid-phase equilibria: experimental methods and systems investigated (2005–2008). Fluid Phase Equilib. 2011;300:1–69.
  • Dohrn R, Brunner G. High-pressure fluid-phase equilibria: experimental methods and systems investigated (1988–1993). Fluid Phase Equilib. 1995;106:213–282.
  • Christov M, Dohrn R. High-pressure fluid phase equilibria: experimental methods and systems investigated (1994–1999). Fluid Phase Equilib. 2002;202:153–218.
  • Dohrn R, Peper S, Fonseca JM. High-pressure fluid-phase equilibria: experimental methods and systems investigated (2000–2004). Fluid Phase Equilib. 2010;288:1–54.
  • Motzfeldt K. High temperature experiments in chemistry and materials science. 1st ed. New York: John Wiley & Sons; 2012.
  • Dingreville R, Karnesky RA, Puel G, et al. Review of the synergies between computational modeling and experimental characterization of materials across length scales. J Mater Sci. 2016;51:1178–1203.
  • Kontogeorgis GM, Folas GK. Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories. 1st ed. Wiltshire: John Wiley & Sons; 2009.
  • Lopez-Echeverry JS, Reif-Acherman S, Araujo-Lopez E. Peng-Robinson equation of state: 40 years through cubics. Fluid Phase Equilib. 2017;447:39–71.
  • Dong WS, Roh HS, Jun KW, et al. Methane reforming over Ni/Ce- ZrO2 catalysts: effect of nickel content. Appl Catal A. 2002;226:63–72.
  • Valderrama JO. The state of the cubic equations of state. Ind Eng Chem Res. 2003;42:1603–1618.
  • Graaf GH, Winkelman JG. Chemical equilibria in methanol synthesis including the water–gas shift reaction: a critical reassessment. Ind Eng Chem Res. 2016;55:5854–5864.
  • Graaf GH, Sijtsema PJJM, Stamhuis E, et al. Chemical equilibria in methanol synthesis. Chem Eng Sci. 1986;41:2883–2890.
  • Hendriks E, Kontogeorgis GM, Dohrn R, et al. Industrial requirements for thermodynamics and transport properties. Ind Eng Chem Res. 2010;49:11131–11141.
  • Peng DY, Robinson DB. A new two-constant equation of state. Ind Eng Chem Fundam. 1976;15:59–64.
  • Péneloux A, Rauzy E, Fréze R. A consistent correction for Redlich-Kwong-Soave volumes. Fluid Phase Equilib. 1982;8:7–23.
  • Maia FM, Tsivintzelis I, Rodriguez O, et al. Equation of state modelling of systems with ionic liquids: literature review and application with the Cubic Plus Association (CPA) model. Fluid Phase Equilib. 2012;332:128–143.
  • Michelsen M, Mollerup JM. Thermodynamic models: fundamental & computational aspects. 2nd ed. Holte: Tie-Line; 2007.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. San Diego (CA): Academic Press; 2002.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. 2nd ed. Oxford: Oxford University Press; 2017.
  • Gross J, Sadowski G. Perturbed-Chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res. 2001;40:1244–1260.
  • Diamantonis NI, Economou IG. Evaluation of statistical associating fluid theory (SAFT) and perturbed chain-SAFT equations of state for the calculation of thermodynamic derivative properties of fluids related to carbon capture and sequestration. Energy Fuels. 2011;25:3334–3343.
  • Diamantonis NI, Boulougouris GC, Mansoor E, et al. Evaluation of cubic, SAFT, and PC-SAFT equations of state for the vapor-liquid equilibrium modeling of CO2 mixtures with other gases. Ind Eng Chem Res. 2013;52:3933–3942.
  • Panagiotopoulos AZ. Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol Phys. 1987;61:813–826.
  • Adams DJ. Chemical potential of hard-sphere fluids by Monte Carlo methods. Mol Phys. 1974;28:1241–1252.
  • Norman GE, Filinov VS. Investigations of phase transitions by a Monte-Carlo method. High Temp Res USSR. 1969;7:216–222.
  • Panagiotopoulos AZ, Quirke N, Stapleton M, et al. Phase equilibria by simulation in the Gibbs ensemble: alternative derivation, generalization and application to mixture and membrane equilibria. Mol Phys. 1988;63:527–545.
  • Siepmann JI, McDonald IR, Frenkel D. Finite-size corrections to the chemical potential. J Phys Condens Matt. 1992;4:679.
  • Dinpajooh M, Bai P, Allan DA, et al. Accurate and precise determination of critical properties from Gibbs ensemble Monte Carlo simulations. J Chem Phys. 2015;143:114113.
  • Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. Equation of state calculations by fast computing machines. J Chem Phys. 1953;21:1087–1092.
  • Rosenbluth MN, Rosenbluth AW. Monte Carlo calculation of the average extension of molecular chains. J Chem Phys. 1955;23:356–359.
  • Routley N. Visualizing the trillion-fold increase in computing power; 2017. [cited 2020 Jan]. Available from: https://www.visualcapitalist.com/visualizing-trillion-fold-increase-computing-power/.
  • Rosch TW, Maginn EJ. Reaction ensemble Monte Carlo simulation of complex molecular systems. J Chem Theory Comput. 2011;7:269–279.
  • Shiflett MB, Maginn EJ. The solubility of gases in ionic liquids. AIChE J. 2017;63:4722–4737.
  • Sheridan QR, Mullen RG, Lee TB, et al. Hybrid computational strategy for predicting CO2 solubilities in reactive ionic liquids. J Phys Chem C. 2018;122:14213–14221.
  • Rahbari A, Poursaeidesfahani A, Torres-Knoop A, et al. Chemical potentials of water, methanol, carbon dioxide and hydrogen sulphide at low temperatures using continuous fractional component Gibbs ensemble Monte Carlo. Mol Simul. 2018;44:405–414.
  • Widom B. Some topics in the theory of fluids. J Chem Phys. 1963;39:2808–2812.
  • Widom B. Potential-distribution theory and the statistical mechanics of fluids. J Phys Chem. 1982;86:869–872.
  • Boulougouris GC, Economou IG, Theodorou DN. Calculation of the chemical potential of chain molecules using the staged particle deletion scheme. J Chem Phys. 2001;115:8231–8237.
  • Boulougouris GC, Economou IG, Theodorou DN. On the calculation of the chemical potential using the particle deletion scheme. Mol Phys. 1999;96:905–913.
  • Coskuner O, Deiters UK. Hydrophobic interactions by Monte Carlo simulations. Zeitschrift für Phys Chem. 2006;220:349–369.
  • Lyubartsev AP, Martsinovski AA, Shevkunov SV, et al. New approach to Monte Carlo calculation of the free energy: method of expanded ensembles. J Chem Phys. 1992;96:1776–1783.
  • Wilding NB, Müller M. Accurate measurements of the chemical potential of polymeric systems by Monte Carlo simulation. J Chem Phys. 1994;101:4324–4330.
  • Escobedo FA, de Pablo JJ. Expanded grand canonical and Gibbs ensemble Monte Carlo simulation of polymers. J Chem Phys. 1996;105:4391–4394.
  • Escobedo FA, de Pablo JJ. Monte Carlo simulation of the chemical potential of polymers in an expanded ensemble. J Chem Phys. 1995;103:2703–2710.
  • Mon KK, Griffiths RB. Chemical potential by gradual insertion of a particle in Monte Carlo simulation. Phys Rev A. 1985;31:956–959.
  • Yoo B, Marin-Rimoldi E, Mullen RG, et al. Discrete fractional component Monte Carlo simulation study of dilute nonionic surfactants at the air–water interface. Langmuir. 2017;33:9793–9802.
  • Mruzik MR, Abraham FF, Schreiber DE, et al. A Monte Carlo study of ion-water clusters. J Chem Phys. 1976;64:481–491.
  • Squire DR, Hoover WG. Monte Carlo simulation of vacancies in rare-gas crystals. J Chem Phys. 1969;50:701–706.
  • Shi W, Maginn EJ. Continuous fractional component Monte Carlo: an adaptive biasing method for open system atomistic simulations. J Chem Theory Comput. 2007;3:1451–1463.
  • Shi W, Maginn EJ. Improvement in molecule exchange efficiency in Gibbs ensemble Monte Carlo: development and implementation of the continuous fractional component move. J Comput Chem. 2008;29:2520–2530.
  • Poursaeidesfahani A, Hens R, Rahbari A, et al. Efficient application of continuous fractional component Monte Carlo in the reaction ensemble. J Chem Theory Comput. 2017;13:4452–4466.
  • Hens R, Rahbari A, Caro-Ortiz S, et al. Brick-CFCMC: open source software for Monte Carlo simulations of phase and reaction equilibria using the continuous fractional component method. J Chem Inf Model. 2020;60:2678–2682.
  • Mullen RG, Maginn EJ. Reaction ensemble Monte Carlo simulation of xylene isomerization in bulk phases and under confinement. J Chem Theory Comput. 2017;13:4054–4062.
  • Balaji SP, Gangarapu S, Ramdin M, et al. Simulating the reactions of CO2 in aqueous monoethanolamine solution by reaction ensemble Monte Carlo using the continuous fractional component method. J Chem Theory Comput. 2015;11:2661–2669.
  • Siepmann JI, Frenkel D. Configurational bias Monte Carlo: a new sampling scheme for flexible chains. Mol Phys. 1992;75:59–70.
  • Frenkel D, Mooij GCAM, Smit B. Novel scheme to study structural and thermal properties of continuously deformable molecules. J Phys Condens Matt. 1992;4(12):3053–3076.
  • de Pablo JJ, Laso M, Suter UW. Estimation of the chemical potential of chain molecules by simulation. J Chem Phys. 1992;96:6157–6162.
  • de Pablo JJ, Laso M, Suter UW. Simulation of polyethylene above and below the melting point. J Chem Phys. 1992;96:2395–2403.
  • de Pablo JJ, Laso M, Siepmann JI, et al. Continuum-configurational-bias Monte Carlo simulations of long-chain alkanes. Mol Phys. 1993;80:55–63.
  • Mezei M. A cavity-biased ( T,V,μ) Monte Carlo method for the computer simulation of fluids. Mol Phys. 1980;40:901–906.
  • Esselink K, Loyens L, Smit B. Parallel Monte Carlo simulations. Phys Rev E. 1995;51:1560–1568.
  • Snurr RQ, Bell AT, Theodorou DN. Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions. J Phys Chem. 1993;97:13742–13752.
  • Clark LA, Gupta A, Snurr RQ. Siting and segregation effects of simple molecules in zeolites MFI, MOR, and BOG. J Phys Chem B. 1998;102:6720–6731.
  • Dubbeldam D, Calero S, Ellis DE, et al. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Simul. 2015;42:81–101.
  • Dubbeldam D, Torres-Knoop A, Walton KS. On the inner workings of Monte Carlo codes. Mol Simul. 2013;39:1253–1292.
  • Nezbeda I, Kolafa J. A new version of the insertion particle method for determining the chemical potential by Monte Carlo simulation. Mol Simul. 1991;5:391–403.
  • Çagin T, Pettitt BM. Grand molecular dynamics: a method for open systems. Mol Simul. 1991;6:5–26.
  • Çagin T, Pettitt BM. Molecular dynamics with a variable number of molecules. Mol Phys. 1991;72:169–175.
  • Attard P. Simulation of the chemical potential and the cavity free energy of dense hard-sphere fluids. J Chem Phys. 1993;98:2225–2231.
  • Onsager L. Theories of concentrated electrolytes. Chem Rev. 1933;13:73–89.
  • Kirkwood JG. Statistical mechanics of fluid mixtures. J Chem Phys. 1935;3(5):300–313.
  • Theodorou DN. Progress and outlook in Monte Carlo simulations. Ind Eng Chem Res. 2010;49:3047–3058.
  • Moučka F, Lísal M, Nezbeda I, et al. Molecular simulation of aqueous electrolyte solubility. 2. Osmotic ensemble Monte Carlo methodology for free energy and solubility calculations and application to NaCl. J Phys Chem B. 2011;115:7849–7861.
  • Born M. Volumen und Hydratationswärme der Ionen. Zeitschrift für Phys Chem. 1920;1:45–48.
  • Bazhin N. The Born formula describes enthalpy of ions solvation. ISRN Thermodyn. 2012;2012.
  • Pettitt B. A perspective on “Volume and heat of hydration of ions”. In: Cramer CJ, Truhlar DG, editors. Theoretical chemistry accounts. New York: Springer; 2000. p. 171–172.
  • Migliore M, Corongiu G, Clementi E, et al. Monte Carlo study of free energy of hydration for Li +, Na +, K +, F −, and Cl − with ab initio potentials. J Chem Phys. 1988;88:7766–7771.
  • Straatsma TP, Berendsen HJC. Free energy of ionic hydration: analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations. J Chem Phys. 1988;89:5876–5886.
  • Hill TL. An introduction to statistical thermodynamics. 1st ed. New York: Dover; 2015.
  • Helfand E, Reiss H, Frisch HL, et al. Scaled particle theory of fluids. J Chem Phys. 1960;33:1379–1385.
  • Beveridge DL, DiCapua F. Free energy via molecular simulation: applications to chemical and biomolecular systems. Review of Biophysics and Biophysical Chemistry</DIFdel>Annu Rev Biophys Biophys Chem. 1989;18:431–492.
  • Langlet J, Claverie P, Caillet J, et al. Improvements of the continuum model. 1. Application to the calculation of the vaporization thermodynamic quantities of nonassociated liquids. J Phys Chem. 1988;92:1617–1631.
  • Kaminsky RD. Monte Carlo evaluation of ensemble averages involving particle number variations in dense fluid systems. J Chem Phys. 1994;101:4986–4994.
  • Resat H, Mezei M. Studies on free energy calculations. II: a theoretical approach to molecular solvation. J Chem Phys. 1994;101:6126–6140.
  • Yu HA, Karplus M. A thermodynamic analysis of solvation. J Chem Phys. 1988;89:2366–2379.
  • McQuarrie DA, Simon JD. Physical chemistry: a molecular approach. 1st ed. Sausalito (CA): University Science Books; 1997.
  • Klimovich PV, Shirts MR, Mobley DL. Guidelines for the analysis of free energy calculations. J Comput Aided Mol Des. 2015;29:397–411.
  • Naden LN, Pham TT, Shirts MR. Linear basis function approach to efficient alchemical free energy calculations. 1. Removal of uncharged atomic sites. J Chem Theory Comput. 2014;10:1128–1149.
  • Naden LN, Shirts MR. Linear basis function approach to efficient alchemical free energy calculations. 2. Inserting and deleting particles with Coulombic interactions. J Chem Theory Comput. 2015;11:2536–2549.
  • Shirts MR, Mobley DL, Chodera JD. Chapter 4 alchemical free energy calculations: ready for prime time? In: Spellmeyer D, Wheeler R, editors. Annual reports in computational chemistry. Amsterdam: Elsevier; 2007. p. 41–59.
  • van der Vegt NFA, Briels WJ. Efficient sampling of solvent free energies in polymers. J Chem Phys. 1998;109:7578–7582.
  • Helfand E, Stillinger FH. Pair distribution in the rigid-sphere system by the method of particle scaling. J Chem Phys. 1962;37:2646–2653.
  • Harris J, Rice SA. A lattice model of a supported monolayer of amphiphile molecules: Monte Carlo simulations. J Chem Phys. 1988;88:1298–1306.
  • Siepmann JI. A method for the direct calculation of chemical potentials for dense chain systems. Mol Phys. 1990;70:1145–1158.
  • Kumar SK, Szleifer I, Panagiotopoulos AZ. Determination of the chemical potentials of polymeric systems from Monte Carlo simulations. Phys Rev Lett. 1991;66:2935–2938.
  • Kumar SK. A modified real particle method for the calculation of the chemical potentials of molecular systems. J Chem Phys. 1992;97:3550–3556.
  • Müller M, Paul W. Measuring the chemical potential of polymer solutions and melts in computer simulations. J Chem Phys. 1994;100:719–724.
  • Lyubartsev AP, Laaksonen A, Vorontsov-Velyaminov PN. Free energy calculations for Lennard-Jones systems and water using the expanded ensemble method a Monte Carlo and molecular dynamics simulation study. Mol Phys. 1994;82:455–471.
  • Beutler TC, Mark AE, van Schaik RC, et al. Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett. 1994;222:529–539.
  • Lo C, Palmer B. Alternative Hamiltonian for molecular dynamics simulations in the grand canonical ensemble. J Chem Phys. 1995;102:925–931.
  • Escobedo FA, DE Pablo JJ. Chemical potential and dimensions of chain molecules in athermal environments. Mol Phys. 1996;89:1733–1754.
  • Meirovitch H. Simulation of the chemical potential of polymers. Comput Theor Polym Sci. 1998;8:219–227.
  • Meirovitch H. A new method for simulation of real chains: scanning future steps. J Phys Chem A-Math Theor. 1982;15:L735–L741.
  • Meirovitch H. Statistical properties of the scanning simulation method for polymer chains. J Chem Phys. 1988;89:2514–2522.
  • Strnada M, Nezbeda I. An extended Gibbs ensemble. Mol Simul. 1999;22:183–198.
  • Bunker A, Dünweg B. Parallel excluded volume tempering for polymer melts. Phys Rev E. 2000;63:016701.
  • Vlugt TJH, Dünweg B. Computing phase equilibria by parallel excluded volume tempering. J Chem Phys. 2001;115:8731–8741.
  • Boinepalli S, Attard P. Grand canonical molecular dynamics. J Chem Phys. 2003;119:12769–12775.
  • Lísal M, Smith WR, Kolafa J. Molecular simulations of aqueous electrolyte solubility: 1. the expanded-ensemble osmotic molecular dynamics method for the solution phase. J Phys Chem B. 2005;109:12956–12965.
  • Pham TT, Shirts MR. Identifying low variance pathways for free energy calculations of molecular transformations in solution phase. J Chem Phys. 2011;135:034114.
  • Torres-Knoop A, Balaji SP, Vlugt TJH, et al. A comparison of advanced Monte Carlo methods for open systems: CFCMC vs CBMC. J Chem Theory Comput. 2014;10:942–952.
  • Sikora BJ, Coln YJ, Snurr RQ. Continuous fractional component Monte Carlo simulations of high-density adsorption in metal-organic frameworks. Mol Simul. 2015;41:1339–1347.
  • Poursaeidesfahani A, Torres-Knoop A, Dubbeldam D, et al. Direct free energy calculation in the continuous fractional component Gibbs ensemble. J Chem Theory Comput. 2016;12:1481–1490.
  • Mullen RG, Corcelli SA, Maginn EJ. Reaction ensemble Monte Carlo simulations of CO2 absorption in the reactive ionic liquid triethyl(octyl)phosphonium 2-cyanopyrrolide. J Phys Chem Lett. 2018;9:5213–5218.
  • Rahbari A, Hens R, Nikolaidis IK, et al. Computation of partial molar properties using continuous fractional component Monte Carlo. Mol Phys. 2018;116:3331–3344.
  • Rahbari A, Hens R, Dubbeldam D, et al. Improving the accuracy of computing chemical potentials in CFCMC simulations. Mol Phys. 2019;117:3493–3508.
  • Rahbari A, Hens R, Moultos OA, et al. Multiple free energy calculations from single state point continuous fractional component Monte Carlo simulation using umbrella sampling. J Chem Theory Comput. 2020;16:1757–1767.
  • Torrie GM, Valleau JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys. 1977;23(2):187–199.
  • Reiss H, Frisch HL, Lebowitz JL. Statistical mechanics of rigid spheres. J Chem Phys. 1959;31:369–380.
  • Kolafa J, Vrtler HL, Aim K, et al. The Lennard-Jones fluid revisited: computer simulation results. Mol Simul. 1993;11:305–319.
  • Vörtler HL, Kettler M. Computer simulation of chemical potentials of primitive models of water. Chem Phys Lett. 2003;377:557–563.
  • Kolafa J, Nezbeda I. Monte Carlo simulations on primitive models of water and methanol. Mol Phys. 1987;61:161–175.
  • Nezbeda I, Slovók J. A family of primitive models of water: three-, four and five-site models. Mol Phys. 1997;90:353–372.
  • Quirke N. Some recent developments in computational chemistry. Mol Simul. 1996;16:193–208.
  • Cracknell RF, Nicholson D, Quirke N. Direct molecular dynamics simulation of flow down a chemical potential gradient in a slit-shaped micropore. Phys Rev Lett. 1995;74:2463–2466.
  • Attard P, Moule GA. A force-balance Monte Carlo simulation of the surface tension of a hard-sphere fluid. Mol Phys. 1993;78:943–959.
  • Wang F, Landau DP. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett. 2001;86:2050–2053.
  • Poulain P, Calvo F, Antoine R, et al. Performances of Wang-Landau algorithms for continuous systems. Phys Rev E. 2006;73:056704.
  • Allen MP. Long-range behaviour in liquid crystals by computer simulation. J Mol Liq. 2000;85:161–171.
  • Kofke DA, Cummings PT. Precision and accuracy of staged free-energy perturbation methods for computing the chemical potential by molecular simulation. Fluid Phase Equilib. 1998;150–151:41–49.
  • Kofke DA, Cummings PT. Quantitative comparison and optimization of methods for evaluating the chemical potential by molecular simulation. Mol Phys. 1997;92:973–996.
  • Vlugt TJH, Martin MG, Smit B, et al. Improving the efficiency of the configurational-bias Monte Carlo algorithm. Mol Phys. 1998;94:727–733.
  • Schenk M, Vidal SL, Vlugt TJH, et al. Separation of alkane isomers by exploiting entropy effects during adsorption on silicalite-1: a configurational-bias Monte Carlo simulation study. Langmuir. 2001;17:1558–1570.
  • Marinari E, Parisi G. Simulated tempering: a new Monte Carlo scheme. EPL. 1992;19:451–458.
  • Geyer CJ, Thompson EA. Annealing Markov chain Monte Carlo with applications to ancestral inference. J Amer Stat Assoc. 1995;90:909–920.
  • Lyubartsev AP, Laaksonen A, Vorontsov-velyaminov PN. Determination of free energy from chemical potentials: application of the expanded ensemble method. Mol Simul. 1996;18:43–58.
  • Lyubartsev AP, Førrisdahl OK, Laaksonen A. Solvation free energies of methane and alkali halide ion pairs: an expanded ensemble molecular dynamics simulation study. J Chem Phys. 1998;108:227–233.
  • Vorontsov-Velyaminov PN, Broukhno AV, Kuznetsova TV, et al. Free energy calculations by expanded ensemble method for lattice and continuous polymers. J Phys Chem. 1996;100:1153–1158.
  • Smit B, Frenkel D. Calculation of the chemical potential in the Gibbs ensemble. Mol Phys. 1989;68:951–958.
  • Paluch AS, Shah JK, Maginn EJ. Efficient solvation free energy calculations of amino acid analogs by expanded ensemble molecular simulation. J Chem Theory Comput. 2011;7:1394–1403.
  • Shirts MR, Pande VS. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. J Chem Phys. 2005;122:134508.
  • Shirts MR, Pitera JW, Swope WC, et al. Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J Chem Phys. 2003;119:5740–5761.
  • Johnson JK, Panagiotopoulos AZ, Gubbins KE. Reactive canonical Monte Carlo: a new simulation technique for reacting or associating fluids. Mol Phys. 1994;81:717–733.
  • Glotzer SC, Stauffer D, Jan N. Monte Carlo simulations of phase separation in chemically reactive binary mixtures. Phys Rev Lett. 1994;72:4109.
  • Turner HC, Brennan JK, Lisal M, et al. Simulation of chemical reaction equilibria by the reaction ensemble Monte Carlo method: a review. Mol Simul. 2008;34:119–146.
  • Smith WR, Triska B. The reaction ensemble method for the computer simulation of chemical and phase equilibria. I. Theory and basic examples. J Chem Phys. 1994;100:3019–3027.
  • Jakobtorweihen S, Hansen N, Keil F. Combining reactive and configurational-bias Monte Carlo: confinement influence on the propene metathesis reaction system in various zeolites. J Chem Phys. 2006;125:224709.
  • Hansen N, Jakobtorweihen S, Keil FJ. Reactive Monte Carlo and grand-canonical Monte Carlo simulations of the propene metathesis reaction system. J Chem Phys. 2005;122:164705.
  • Sindzingre P, Ciccotti G, Massobrio C, et al. Partial enthalpies and related quantities in mixtures from computer simulation. Chem Phys Lett. 1987;136:35–41.
  • Sindzingre P, Massobrio C, Ciccotti G, et al. Calculation of partial enthalpies of an argon-krypton mixture by NPT molecular dynamics. Chem Phys. 1989;129:213–224.
  • Josephson TR, Singh R, Minkara MS, et al. Partial molar properties from molecular simulation using multiple linear regression. Mol Phys. 2019;117:1–14.
  • Lubansky AS, Yeow YL, Leong YK, et al. A general method of computing the derivative of experimental data. AIChE J. 2006;52:323–332.
  • Tikhonov AN, Arsenin VY. Solutions of ill-posed problems. John F, translator. New York: V. H. Winston and Sons (distributed by Wiley); 1977.
  • Schnell SK, Skorpa R, Bedeaux D, et al. Partial molar enthalpies and reaction enthalpies from equilibrium molecular dynamics simulation. J Chem Phys. 2014;141:144501.
  • Kirkwood JG, Buff FP. The statistical mechanical theory of solutions. i. J Chem Phys. 1951;19:774–777.
  • Krüger P, Schnell SK, Bedeaux D, et al. Kirkwood–Buff integrals for finite volumes. J Phys Chem Lett. 2012;4:235–238.
  • Dawass N, Krüger P, Simon JM, et al. Kirkwood-Buff integrals of finite systems: shape effects. Mol Phys. 2018;116:1573–1580.
  • Dawass N, Krüger P, Schnell SK, et al. Kirkwood-Buff integrals from molecular simulation. Fluid Phase Equilib. 2019;486:21–36.
  • Krüger P, Vlugt TJH. Size and shape dependence of finite-volume Kirkwood-Buff integrals. Phys Rev E. 2018;97:051301–5.
  • Dawass N, Krüger P, Schnell SK, et al. Kirkwood-Buff integrals using molecular simulation: estimation of surface effects. Nanomaterials. 2020;10:771.
  • Rahbari A, Josephson TR, Sun Y, et al. Multiple linear regression and thermodynamic fluctuations are equivalent for computing thermodynamic derivatives from molecular simulation. Fluid Phase Equilib. 2020;523:112785.
  • Martin MG, Siepmann JI. Calculating gibbs free energies of transfer from gibbs ensemble Monte Carlo simulations. Theor Chem Acc. 1998;99:347–350.
  • Chase MW. NIST-JANAF themochemical tables, fourth edition. J Phys Chem Ref Data. 1998;4:1–1951.
  • Chase MW, Curnutt J, Prophet H, et al. JANAF thermochemical tables, 1975 supplement. J Phys Chem Ref Data. 1975;4:1–176.
  • Rahbari A. Thermodynamics of industrially relevant systems: method development and applications [PhD thesis]. Delft University of Technology; 2020. Available from: https://doi.org/10.4233/uuid:eb04d860-281a-4c6b-8c5b-263f526d0bd9.
  • Johnson RD III. NIST computational chemistry comparison and benchmark database. In: NIST standard reference database number 101 release 20, August 2019. Johnson RD III, editor; 2019. Available from: http://cccbdb.nist.gov/.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, revision c.02; 2016. Wallingford (CT): Gaussian.
  • Rahbari A, Brenkman J, Hens R, et al. Solubility of water in hydrogen at high pressures: a molecular simulation study. J Chem Eng Data. 2019;64:4103–4115.
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935.
  • Marx D, Nielaba P. Path-integral Monte Carlo techniques for rotational motion in two dimensions: quenched, annealed, and no-spin quantum-statistical averages. Phys Rev A. 1992;45:8968–8971.
  • Hens R, Vlugt TJH. Molecular simulation of vapor-liquid equilibria using the Wolf method for electrostatic interactions. J Chem Eng Data. 2018;63:1096–1102.
  • Caro-Ortiz S, Hens R, Zuidema E, et al. Molecular simulation of the vapor-liquid equilibria of xylene mixtures: force field performance, and Wolf vs. Ewald for electrostatic interactions. Fluid Phase Equilib. 2019;485:239–247.
  • Caro-Ortiz S, Hens R, Zuidema E, et al. Corrigendum to Molecular simulation of the vapor-liquid equilibria of xylene mixtures: force field performance, and Wolf vs. Ewald for electrostatic interactions. Fluid Phase Equilib. 2019;485:239–247. Fluid Phase Equilib. 2020;506:112370.
  • Nikolaidis IK, Poursaeidesfahani A, Csaszar Z, et al. Modeling the phase equilibria of asymmetric hydrocarbon mixtures using molecular simulation and equations of state. AIChE J. 2019;65:792–803.
  • Dubbeldam D, Calero S, Vlugt TJH. iRASPA: GPU-accelerated visualization software for materials scientists. Mol Simul. 2018;44:653–676.
  • Brennan JK. Cavity-bias sampling in reaction ensemble Monte Carlo simulations. Mol Phys. 2005;103:2647–2654.
  • Matito-Martos I, Rahbari A, Martin-Calvo A, et al. Adsorption equilibrium of nitrogen dioxide in porous materials. Phys Chem Chem Phys. 2018;20:4189–4199.
  • Gillespie LJ, Beattie JA. The thermodynamic treatment of chemical equilibria in systems composed of real gases. I. An approximate equation for the mass action function applied to the existing data on the Haber equilibrium. Phys Rev. 1930;36(4):743.
  • Poling BE, Prausnitz JM, O'Connell JP. The properties of gases and liquids. 5th ed. New York: McGraw-Hill; 2001.
  • Matito-Martos I, García-Reyes J, Martin-Calvo A, et al. Improving ammonia production using zeolites. J Phys Chem C. 2019;123:18475–18481.
  • Sławek A, Grzybowska K, Vicent-Luna JM, et al. Adsorption of cyclohexane in pure silica zeolites: high-throughput computational screening validated by experimental data. Chem Phys Chem. 2018;19:3364–3371.
  • Zhang H, Snurr RQ. Computational study of water adsorption in the hydrophobic metal-organic framework ZIF-8: adsorption mechanism and acceleration of the simulations. J Phys Chem C. 2017;121:24000–24010.
  • Torres-Knoop A, Krishna R, Dubbeldam D. Separating xylene isomers by commensurate stacking of p-xylene within channels of MAF-X8. Angew Chem. 2014;126:7908–7912.
  • Torres-Knoop A, Poursaeidesfahani A, Vlugt TJH, et al. Behavior of the enthalpy of adsorption in nanoporous materials close to saturation conditions. J Chem Theory Comput. 2017;13:3326–3339.
  • Torres-Knoop A, Burtch NC, Poursaeidesfahani A, et al. Optimization of particle transfers in the Gibbs ensemble for systems with strong and directional interactions using CBMC, CFCMC, and CB/CFCMC. J Phys Chem C. 2016;120:9148–9159.
  • Torres-Knoop A, Heinen J, Krishna R, et al. Entropic separation of styrene/ethylbenzene mixtures by exploitation of subtle differences in molecular configurations in ordered crystalline nanoporous adsorbents. Langmuir. 2015;31:3771–3778.
  • Waage MH, Vlugt TJH, Kjelstrup S. Phase diagram of methane and carbon dioxide hydrates computed by Monte Carlo simulations. J Phys Chem B. 2017;121:7336–7350.
  • Ramdin M, Balaji SP, Torres-Knoop A, et al. Solubility of natural gas species in ionic liquids and commercial solvents: experiments and Monte Carlo simulations. J Chem Eng Data. 2015;60:3039–3045.
  • Ramdin M, Chen Q, Balaji SP, et al. Solubilities of CO2, CH4, C2H6, and SO2 in ionic liquids and selexol from Monte Carlo simulations. J Comput Sci. 2016;15:74–80.
  • Jamali SH, Ramdin M, Becker TM, et al. Solubility of sulfur compounds in commercial physical solvents and an ionic liquid from Monte Carlo simulations. Fluid Phase Equilib. 2017;433:50–55.
  • Becker TM, Wang M, Kabra A, et al. Absorption refrigeration cycles with ammonia–ionic liquid working pairs studied by molecular simulation. Ind Eng Chem Res. 2018;57:5442–5452.
  • Shi W, Maginn EJ. Molecular simulation and regular solution theory modeling of pure and mixed gas absorption in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][T f2N]). J Phys Chem B. 2008;112:16710–16720.
  • Shi W, Maginn EJ. Molecular simulation of ammonia absorption in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][T f2N]). AIChE J. 2009;55:2414–2421.
  • Shi W, Maginn EJ. Atomistic simulation of the absorption of carbon dioxide and water in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([hmim][T f2N]. J Phys Chem B. 2008;112:2045–2055.
  • Zhang X, Huo F, Liu Z, et al. Absorption of CO2 in the ionic liquid 1-n-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([hmim][FEP]): a molecular view by computer simulations. J Phys Chem B. 2009;113:7591–7598.
  • Shi W, Sorescu DC, Luebke DR, et al. Molecular simulations and experimental studies of solubility and diffusivity for pure and mixed gases of H2, CO2, and ar absorbed in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][ Tf2N]). J Phys Chem B. 2010;114:6531–6541.
  • Shi W, Siefert NS, Morreale BD. Molecular simulations of CO2, H2, h2O, and H2S gas absorption into hydrophobic poly(dimethylsiloxane) (PDMS) solvent: solubility and surface tension. J Phys Chem C. 2015;119:19253–19265.
  • Shi W, Thompson RL, Albenze E, et al. Contribution of the acetate anion to CO2 solubility in ionic liquids: theoretical method development and experimental study. J Phys Chem B. 2014;118:7383–7394.
  • Shah JK, Maginn EJ. Monte Carlo simulations of gas solubility in the ionic liquid 1-n-butyl-3-methylimidazolium Hexafluorophosphate. J Phys Chem B. 2005;109:10395–10405.
  • Shi W, Sorescu DC. Molecular simulations of CO2 and H2 sorption into ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][T f2N]) confined in carbon nanotubes. J Phys Chem B. 2010;114:15029–15041.
  • Ramdin M, Balaji SP, Vicent-Luna JM, et al. Solubility of the precombustion gases CO2, CH4, CO, H2, N2, and H2S in the ionic liquid [bmim][Tf2N] from Monte Carlo simulations. J Phys Chem C. 2014;118:23599–23604.
  • Vlugt TJH. Measurement of chemical potentials of systems with strong excluded volume interactions by computing the density of states. Mol Phys. 2002;100(17):2763–2771.
  • Chen Q, Balaji SP, Ramdin M, et al. Validation of the CO2/N2O analogy using molecular simulation. Ind Eng Chem Res. 2014;53:18081–18090.