344
Views
3
CrossRef citations to date
0
Altmetric
Articles

Crystallisation competition between cubic and hexagonal ice structures: molecular-dynamics insight

, &
Pages 18-26 | Received 27 Apr 2020, Accepted 24 Nov 2020, Published online: 21 Dec 2020

References

  • Lisgarten ND, Blackman M. The cubic form of ice. Nature. 1956;178:39–40. doi:10.1038/178039a0.
  • Dowell LG, Rinfert AP. Low-temperature forms of ice as studied by X-ray diffraction. Nature. 1960;188:1144–1148. doi:10.1038/1881144a0.
  • Klotz S, Besson JM, Hamel G, et al. Metastable ice VII at low temperature and ambient pressure. Nature. 1999;398:681–684. doi:10.1038/19480.
  • Klug DD, Handa YP, Tse JS, et al. Transformation of ice VIII to amorphous ice by ‘“melting”’ at low temperature. J Chem Phys. 1989;90:2390–2392. doi:10.1063/1.455981.
  • Ghaani MR, English NJ. Kinetic study on electro-nucleation of water in a heterogeneous propane nano-bubble system to form polycrystalline ice Ic. J Chem Phys. 2020;153; doi:10.1063/5.0017929.
  • Svishchev IM, Kusalik PG. Electrofreezing of liquid water: a microscopic perspective. J Am Chem Soc. 1996;118:649–654. doi:10.1021/ja951624 l.
  • English NJ, Waldron CJ. Perspectives on external electric fields in molecular simulation: progress, prospects and challenges. Phys Chem Chem Phys. 2015;17:12407–12440. doi:10.1039/C5CP00629E.
  • Croteau T, Bertram AK, Patey GN. Observations of high-density ferroelectric ordered water in Kaolinite trenches using Monte Carlo simulations. J Phys Chem A. 2010;114:8396–8405. doi:10.1021/jp104643p.
  • Liao B, Qiu L, Wang D, et al. The behaviour of water on the surface of kaolinite with an oscillating electric field. RSC Adv. 2019;9:21793–21803. doi:10.1039/C9RA04269E.
  • Hart FX, Palisano JR. The application of electric fields in biology and medicine. In: Electr. F. InTech; 2018. doi:10.5772/intechopen.71683.
  • Bernardi M, Marracino P, Ghaani MR, et al. Human aquaporin 4 gating dynamics under axially oriented electric-field impulses: a non-equilibrium molecular-dynamics study. J Chem Phys. 2018;149:245102. doi:10.1063/1.5044665.
  • Jha P, Xanthakis E, Jury V, et al. An overview on magnetic field and electric field interactions with Ice crystallisation; application in the case of frozen food. Crystals (Basel). 2017;7:299. doi:10.3390/cryst7100299.
  • Fallah-Joshaqani S, Hamdami N, Keshavarzi E, et al. Evaluation of the static electric field effects on freezing parameters of some food systems. Int J Refrig. 2019;99:30–36. doi:10.1016/j.ijrefrig.2018.12.011.
  • Mayer E, Hallbrucker A. Cubic ice from liquid water. Nature. 1987;325:601–602. doi:10.1038/325601a0.
  • Elarby-Aouizerat A, Jal J-F, Dupuy J, et al. Comments on the ice I c structure and I c to I h phase transformation mechanism: a neutron scattering investigation of ice precipitates in glassy LiCl.D 2 O. Le J Phys Colloq. 1987;48:C1-465–C1-470. doi:10.1051/jphyscol:1987164.
  • Murray BJ, Bertram AK. Formation and stability of cubic ice in water droplets. Phys Chem Chem Phys. 2006;8:186–192. doi:10.1039/b513480c.
  • Kuhs WF, Sippel C, Falenty A, et al. Extent and relevance of stacking disorder in “ice Ic”. Proceedings of the National Academy of Sciences. 2012;109:21259–21264. doi:10.1073/pnas.1210331110.
  • Hobbs PV. Ice physics. Oxford: Oxford University Press; 2010.
  • Lupi L, Hudait A, Peters B, et al. Role of stacking disorder in ice nucleation. Nature. 2017;551:218–222. doi:10.1038/nature24279.
  • Leitold C, Dellago C. Folding mechanism of a polymer chain with short-range attractions. J Chem Phys. 2014;141:134901. doi:10.1063/1.4896560.
  • Haji-Akbari A, Debenedetti PG. Direct calculation of ice homogeneous nucleation rate for a molecular model of water. Proc Natl Acad Sci. 2015;112:10582–10588. doi:10.1073/pnas.1509267112.
  • Malkin TL, Murray BJ, Brukhno AV, et al. Structure of ice crystallized from supercooled water. Proc Natl Acad Sci. 2012;109:1041–1045. doi:10.1073/pnas.1113059109.
  • Handa YP, Klug DD, Whalley E. Difference in energy between cubic and hexagonal ice. J Chem Phys. 1986;84:7009–7010. doi:10.1063/1.450622.
  • Kohl I, Mayer E, Hallbrucker A. The glassy water–cubic ice system: a comparative study by X-ray diffraction and differential scanning calorimetry. Phys Chem Chem Phys. 2000;2:1579–1586. doi:10.1039/a908688i.
  • del Rosso L, Celli M, Grazzi F, et al. Cubic ice Ic without stacking defects obtained from ice XVII. Nat Mater. 2020;19:663–668. doi:10.1038/s41563-020-0606-y.
  • Komatsu K, Machida S, Noritake F, et al. Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate. Nat Commun. 2020;11(464):1–5. doi:10.1038/s41467-020-14346-5.
  • Hansen TC, Koza MM, Kuhs WF. Formation and annealing of cubic ice: I. Modelling of stacking faults. J Phys Condens Matter. 2008;20:285104. doi:10.1088/0953-8984/20/28/285104.
  • Ghaani MR, English NJ. Molecular-dynamics study of propane-hydrate dissociation: fluctuation-dissipation and non-equilibrium analysis. J Chem Phys. 2018;148:114504. doi:10.1063/1.5018192.
  • Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7:1103–1112. doi:10.1063/1.1750380.
  • Catti M, Ghaani MR, Pinus I. Overpressure role in isothermal kinetics of H2 desorption-absorption: the 2LiBH4-Mg2FeH6 system. J Phys Chem C. 2013;117:26460–26465; doi:10.1021/jp409009n.
  • Ghaani MR, English NJ. Molecular dynamics study of propane hydrate dissociation: nonequilibrium analysis in externally applied electric fields. J Phys Chem C. 2018;122:7504–7515. doi:10.1021/acs.jpcc.7b12238.
  • Criado JM, Ortega A. Non-isothermal transformation kinetics: Remarks on the Kissinger method. J Non Cryst Solids. 1986;87:302–311. doi:10.1016/S0022-3093(86)80004-7.
  • Li QJ, Hong X. Non-isothermal kinetic model for reduction of ferrous oxide with hydrogen and carbon monoxide, Ironmak. Steelmak. 2009;36:24–28. doi:10.1179/174328107X203787.
  • Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–1706. doi:10.1021/ac60131a045.
  • Ghaani MR, Catti M. Investigation on the kinetic mechanism of the reduction of Fe2O3/CoO-decorated carbon xerogels: A non-isothermal study. J Solid State Chem. 2019;277:368–375. doi:10.1016/j.jssc.2019.06.034.
  • Thieme K, Avramov I, Rüssel C. The mechanism of deceleration of nucleation and crystal growth by the small addition of transition metals to lithium disilicate glasses. Sci Rep. 2016;6:25451. doi:10.1038/srep25451.
  • Kim SH, Ahn SH, Hirai T. Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer. 2003;44:5625–5634. doi:10.1016/S0032-3861(03)00623-2.
  • Matusita K, Sakka S. Kinetic study of crystallization of glass by differential thermal analysis: criterion on application of Kissinger plot. J Non Cryst Solids. 1980;38–39:741–746. doi:10.1016/0022-3093(80)90525-6.
  • Ghormley JA. Enthalpy changes and heat-capacity changes in the transformations from high-surface-area amorphous ice to stable hexagonal ice. J Chem Phys. 1968;48:503–508. doi:10.1063/1.1667954.
  • Henderson DW. Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J Non Cryst Solids. 1979;30:301–315. doi:10.1016/0022-3093(79)90169-8.
  • Meisel LV, Cote PJ. Non-isothermal transformation kinetics: application to metastable phases. Acta Metall. 1983;31:1053–1059. doi:10.1016/0001-6160(83)90201-8.
  • Dhaundiyal A, Singh SB, Hanon MM, et al. Determination of kinetic parameters for the thermal decomposition of parthenium hysterophorus. Environ Clim Technol. 2018;22:5–21. doi:10.1515/rtuect-2018-0001.
  • Schulz H. From the Kissinger equation to model-free kinetics: reaction kinetics of thermally initiated solid-state reactions. ChemTexts. 2018;4:9. doi:10.1007/s40828-018-0062-3.
  • Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–149.
  • Frączyk A. The activation energy of primary crystallization of Fe95Si5 metallic glass. Tech Sci. 2011;14:93–100.
  • Johari GP. On the coexistence of cubic and hexagonal ice between 160 and 240 K. Philos Mag B. 1998;78:375–383. doi:10.1080/13642819808206734.
  • Johari GP. Water’s size-dependent freezing to cubic ice. J Chem Phys. 2005;122:194504.
  • Thürmer K, Bartelt NC. Growth of multilayer ice films and the formation of cubic ice imaged with STM. Phys Rev B. 2008;77:195425. doi:10.1103/PhysRevB.77.195425.
  • Thürmer K, Nie S. Formation of hexagonal and cubic ice during low-temperature growth. Proc Natl Acad Sci. 2013;110:11757–11762. doi:10.1073/pnas.1303001110.
  • Maki LR, Galyan EL, Chang-Chien MM, et al. Ice nucleation induced by pseudomonas syringae. Appl Microbiol. 1974;28:456–459.
  • Michaelides A, Morgenstern K. Ice nanoclusters at hydrophobic metal surfaces. Nat Mater. 2007;6:597–601. doi:10.1038/nmat1940.
  • Reale R, English NJ, Garate J-A, et al. Human aquaporin 4 gating dynamics under and after nanosecond-scale static and alternating electric-field impulses: A molecular dynamics study of field effects and relaxation. J Chem Phys. 2013;139:205101. doi:10.1063/1.4832383.
  • Haji-Akbari A, DeFever RS, Sarupria S, et al. Suppression of sub-surface freezing in free-standing thin films of a coarse-grained model of water. Phys Chem Chem Phys. 2014;16:25916–25927. doi:10.1039/c4cp03948c.
  • Lupi L, Hudait A, Molinero V. Heterogeneous nucleation of ice on carbon surfaces. J Am Chem Soc. 2014;136:3156–3164. doi:10.1021/ja411507a.
  • Cabriolu R, Li T. Ice nucleation on carbon surface supports the classical theory for heterogeneous nucleation. Phys Rev E Stat Nonlin Soft Matter Phys. 2015;91:052402. doi:10.1103/PhysRevE.91.052402.
  • Stillinger FH, Weber TA. Computer simulation of local order in condensed phases of silicon. Phys Rev B. 1985;31:5262–5271. doi:10.1103/PhysRevB.31.5262.
  • Molinero V, Moore EB. Water modeled as an intermediate element between carbon and silicon. J Phys Chem B. 2009;113:4008–4016. doi:10.1021/jp805227c.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi:10.1006/JCPH.1995.1039.
  • Soper AK. Joint structure refinement of x-ray and neutron diffraction data on disordered materials: application to liquid water. J Phys Condens Matter. 2007;19:335206. doi:10.1088/0953-8984/19/33/335206.
  • Guo Q, Ghaani MR, Nandi PK, et al. Pressure-induced densification of ice Ih under triaxial mechanical compression: dissociation versus retention of crystallinity for intermediate states in atomistic and coarse-grained water models. J Phys Chem Lett. 2018;9:5267–5274. doi:10.1021/acs.jpclett.8b02270.
  • Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. J Chem Phys. 1994;101:4177–4189. doi:10.1063/1.467468.
  • Moore EB, de la Llave E, Welke K, et al. Freezing, melting and structure of ice in a hydrophilic nanopore. Phys Chem Chem Phys. 2010;12:4124. doi:10.1039/b919724a.
  • Soper AK. The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem Phys. 2000;258:121–137. doi:10.1016/S0301-0104(00)00179-8.
  • Nandi PK, Burnham CJ, Futera Z, et al. Ice-amorphization of supercooled water nanodroplets in No Man’s Land. ACS Earth Sp Chem. 2017;1:187–196. doi:10.1021/acsearthspacechem.7b00011.
  • Santra B, DiStasio RA, Martelli F, et al. Local structure analysis in ab initio liquid water. Mol Phys. 2015;113:2829–2841. doi:10.1080/00268976.2015.1058432.
  • Shiratani E, Sasai M. Molecular scale precursor of the liquid-liquid phase transition of water. J Chem Phys. 1998;108:3264–3276. doi:10.1063/1.475723.
  • Sellberg JA, Huang C, McQueen TA, et al. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature. 2014;510:381–384. doi:10.1038/nature13266.
  • Finney JL, Hallbrucker A, Kohl I, et al. Structures of high and low density amorphous ice by neutron diffraction. Phys Rev Lett. 2002;88:225503. doi:10.1103/PhysRevLett.88.225503.
  • Moore EB, Molinero V. Structural transformation in supercooled water controls the crystallization rate of ice. Nature. 2011;479:506–508. doi:10.1038/nature10586.
  • Nandi PK, Burnham CJ, English NJ. Electro-nucleation of water nano-droplets in No Man’s Land to fault-free ice Ic. Phys Chem Chem Phys. 2018;20:8042–8053. doi:10.1039/C7CP07406A.
  • Galwey AK, Sheen DB, Sherwood JN. Should the melting of ice be represented as a solid state reaction? Thermochim Acta. 2001;375:161–167. doi:10.1016/S0040-6031(01)00523-8.
  • Jeffery CA, Austin PH. Homogeneous nucleation of supercooled water: results from a new equation of state. J Geophys Res Atmos. 1997;102:25269–25279. doi:10.1029/97JD02243.
  • Barahona D. Thermodynamic derivation of the activation energy for ice nucleation. Atmos Chem Phys. 2015;15:13819–13831. doi:10.5194/acp-15-13819-2015.
  • Malkin TL, Murray BJ, Salzmann CG, et al. Stacking disorder in ice I. Phys Chem Chem Phys. 2015;17:60–76. doi:10.1039/C4CP02893G.
  • Hudait A, Qiu S, Lupi L, et al. Free energy contributions and structural characterization of stacking disordered ices. Phys Chem Chem Phys. 2016;18:9544–9553. doi:10.1039/C6CP00915H.
  • Engel EA, Monserrat B, Needs RJ. Anharmonic nuclear motion and the relative stability of hexagonal and cubic ice. Phys Rev X. 2015;5:021033. doi:10.1103/PhysRevX.5.021033.
  • Gillan MJ, Alfè D, Michaelides A. Perspective: how good is DFT for water? J Chem Phys. 2016;144:130901. doi:10.1063/1.4944633.
  • Chan H, Cherukara MJ, Narayanan B, et al. Machine learning coarse grained models for water. Nat Commun. 2019;10:379. doi:10.1038/s41467-018-08222-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.