270
Views
4
CrossRef citations to date
0
Altmetric
Articles

Combustion chemistry of n-heptane/ethanol blends: a ReaxFF study

&
Pages 37-45 | Received 10 Aug 2020, Accepted 04 Dec 2020, Published online: 05 Jan 2021

References

  • Sarathy SM, Farooq A, Kalghatgi GT. Recent progress in gasoline surrogate fuels. Prog Energy Combust Sci. 2018;65:67–108.
  • Dagaut P, Reuillon M, Cathonnet M. Experimental study of the oxidation of n-heptane in a Jet Stirred Reactor from Low to high temperature and Pressures up to 40 Atm. Combust Flame. 1995;101:132–140.
  • Sarathy SM, Oßwald P, Hansen N, et al. Alcohol combustion chemistry. Prog Energy Combust Sci. 2014;44:40–102.
  • Xu H, Yao C, Xu G, et al. Experimental and modelling studies of the effects of methanol and ethanol addition on the laminar premixed low-pressure n-heptane/toluene flames. Combust Flame. 2013;160:1333–1344.
  • Inal F, Senkan S. Effects of oxygenate concentration on species mole fractions in premixed -heptane flames. Fuel. 2005;84:495–503.
  • Song J, Yao C, Liu S, et al. Experiment study of oxygenates impact on n-heptane flames with tunable synchrotron vacuum UV photoionization. Fuel. 2009;88:2297–2302.
  • Li R, Liu Z, Han Y, et al. Investigation into the influence of the ethanol concentration on the flame structure and soot precursor formation of the n-heptane/ethanol premixed laminar flame. Energy & Fuels. 2018;32:4732–4746.
  • Singh E, Tingas E-A, Goussis D, et al. Chemical ignition characteristics of ethanol blending with primary reference fuels. Energy & Fuels. 2019;33:10185–10196.
  • Song J, Yao C, Liu S, et al. Effects of ethanol addition on n-heptane decomposition in premixed flames. Energy & Fuels. 2008;22:3806–3809.
  • Chen G, Yu W, Jiang X, et al. Experimental and modeling study on the influences of methanol on premixed fuel-rich n-heptane flames. Fuel. 2013;103:467–472.
  • Seidel L, Moshammer K, Wang X, et al. Comprehensive kinetic modeling and experimental study of a fuel-rich, premixed n -heptane flame. Combust Flame. 2015;162:2045–2058.
  • Hu E, Gao Z, Liu Y, et al. Experimental and modeling study on ignition delay times of dimethoxy methane/ n -heptane blends. Fuel. 2017;189:350–357.
  • Arvelos S, Hori CE. ReaxFF study of ethanol oxidation in O2/N2 and O2/CO2 Environments at high temperatures. J Chem Inf Model. 2020;60:700–713.
  • Pu Y, Liu C, Li Q, et al. Pyrolysis mechanism of HFO-1234yf with R32 by ReaxFF MD and DFT method. Int J. Refrig. 2020;109:82–91.
  • Liu Y, Li G, Ding J. Insights into the high-temperature oxidation of methylcyclohexane. Fuel. 2019;241:273–282.
  • Feng M, Jiang XZ, Mao Q, et al. Initiation mechanisms of enhanced pyrolysis and oxidation of JP-10 (exo-tetrahydrodicyclopentadiene) on functionalized graphene sheets: Insights from ReaxFF molecular dynamics simulations. Fuel. 2019;254:115643.
  • Yuan H, Kong W, Liu F, et al. Study on soot nucleation and growth from PAHs and some reactive species at flame temperatures by ReaxFF molecular dynamics. Chem Eng Sci. 2019;195:748–757.
  • Zhao J, Lin Y, Huang K, et al. Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics. Fuel. 2020;262:116677.
  • Chenoweth K, van Duin ACT, Goddard WA. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A. 2008;112:1040–1053.
  • Hoover WG. CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS. Phys Rev A. 1985;31:1695–1697.
  • He Z, Li X-B, Liu L-M, et al. The intrinsic mechanism of methane oxidation under explosion condition: A combined ReaxFF and DFT study. Fuel. 2014;124:85–90.
  • Lümmen N. Aggregation of carbon in an atmosphere of molecular hydrogen investigated by ReaxFF-molecular dynamics simulations. Comput Mater Sci. 2010;49:243–252.
  • Liu L, Bai C, Sun H, et al. 3rd, mechanism and kinetics for the initial steps of pyrolysis and combustion of 1,6-dicyclopropane-2,4-hexyne from ReaxFF reactive dynamics. J Phys Chem A. 2011;115:4941–4950.
  • Wang Q-D, Wang J-B, Li J-Q, et al. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane. Combust Flame. 2011;158:217–226.
  • Zhang LZ, van Duin ACT, Zybin SV, et al. Thermal decomposition of Hydrazines from reactive dynamics using the ReaxFF reactive force field. J Phys Chem B. 2009;113:10770–10778.
  • Liu Y, Ding J, Han K-L. Molecular dynamics simulation of the high-temperature pyrolysis of methylcyclohexane. Fuel. 2018;217:185–192.
  • Ding J, Zhang L, Zhang Y, et al. A reactive molecular dynamics study of n-heptane pyrolysis at high temperature. J Phys Chem A. 2013;117:3266–3278.
  • Chakir A, Bellimam M, Boettner JC, et al. Kinetic study of N-heptane oxidation. Int J Chem Kinet. 1992;24:385–410.
  • Ding J, Zhang L, Han K. Thermal rate constants of the pyrolysis of n-heptane. Combust Flame. 2011;158:2314–2324.
  • Lee C, Vranckx S, Heufer KA, et al. On the chemical kinetics of ethanol oxidation: Shock Tube, rapid Compression Machine and detailed Modeling study. Zeitschrift für Physikalische Chemie. 2012;226:1–28.
  • Leplat N, Dagaut P, Togbé C, et al. Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor. Combust Flame. 2011;158:705–725.
  • Mittal G, Burke SM, Davies VA, et al. Autoignition of ethanol in a rapid compression machine. Combust Flame. 2014;161:1164–1171.
  • Leplat N, Seydi A, Vandooren J. An experimental study of the structure of a stoichiometric ethanol/oxygen/argon flame. Combustion Science and Technology. 2008;180:519–532.
  • Hsu CC, Mebel AM, Lin MC. Ab initio molecular orbital study of the HCO + O2 reaction: direct versus indirect abstraction channels. J Chem Phys. 1996;105:2346–2352.
  • Ashraf C, van Duin ACT. Extension of the ReaxFF combustion force field toward Synas combustion and initial oxidation kinetics. J Phys Chem A. 2017;121:1051–1068.
  • Bajus M, Vesely V. Steam cracking of hydrocarbons. 1. pyrolysis of heptane. Ind Eng Chem Prod Res Dev. 1979;18:31–37.
  • Aribike DS, Susu AA, and KINETICS. Mechanism Of The Thermal Cracking Of n-HEPTANE. Thermochim Acta. 1988;127:247–258.
  • Chakraborty JP, Kunzru D. High pressure pyrolysis of n-heptane. J Anal Appl Pyrolysis. 2009;86:44–52.
  • Pant KK, Kunzru D. Pyrolysis of n-heptane: kinetics and modeling. J Anal Appl Pyrolysis. 1996;36:103–120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.