226
Views
2
CrossRef citations to date
0
Altmetric
Articles

Research on MD simulation for diamond tool cutting iron

, ORCID Icon, &
Pages 46-57 | Received 18 Sep 2020, Accepted 07 Dec 2020, Published online: 04 Jan 2021

References

  • Wang MH, You SY, Wang FN, et al. MD simulation of tool wear behaviour based on changes of tool rake and flank angle caused by diamond tool position adjustment. Mol Simul. 2018. DOI:10.1080/08927022.2018.1559309
  • Cheng K, Luo X, Holt R, et al. Modeling and simulation of the tool wear in nanometric cutting. Wear. 2003;255:1427–1432. DOI:10.1016/S0043-1648(03)00178-9
  • Xu WJ, Huang S, Chen FZ, et al. Diamond wear properties in cold plasma jet. Diam Relat Mat. 2014;48:96–103. DOI:10.1016/j.diamond.2014.07.008
  • Zong WJ, Sun T, Li D, et al. XPS analysis of the groove wearing marks on flank face of diamond tool in nanometric cutting of silicon wafer. Int J Mach Tools Manuf. 2008;48:1678–1687. DOI:10.1016/j.ijmachtools.2008.06.008
  • Khurshudov G, Kato K, Wear KJ. Wear of the AFM diamond tip sliding against silicon. Wear. 1997;203–204:22–27. DOI:10.1016/s0043-1648(96)07447-9
  • An L, Dang Q, Liu Y, et al. A new method for deburring of servo valve core edge based on ultraprecision cutting with the designed monocrystalline diamond tool. Sci China Technol Sci. 2019;62:1805–1815. DOI:10.1007/s11431-019-9541-3
  • Dang Q, Liu Y, Chen F, et al. Experimental investigation on machinability of DMLS Ti6Al4V under dry drilling process. Mater Manuf Process. 2019;34:749–758. DOI:10.1080/10426914.2019.1594254
  • Ming W, Dang Q, An L, et al. Chip formation and hole quality in dry drilling additive manufactured Ti6Al4V. Mater Manuf Process. 2020;35:43–51. DOI:10.1080/10426914.2019.1692353
  • Narulkar R, Bukkapatnam S, Raff M, et al. Graphitization as a precursor to wear of diamond in machining pure iron: a molecular dynamics investigation. Comput Mater Sci. 2009;45:0–366. DOI:10.1016/j.commatsci.2008.10.007
  • Lin B, Han S, Yu Y. Experimental study on molecular dynamics simulation in nanometer grinding. J Tianjin Univ. 2000;033:652–656. DOI:cnki:sun:tjdx.0.2000-05-025
  • Liu C, Zhang J, Chen X, et al. Influence of micro grooves of diamond tool on silicon cutting: a molecular dynamic study. Mol Simul. 2020;46:92–101. DOI:10.1080/08927022.2019.1675884
  • Zhao H, Zhang L, Zhang P, et al. Influence of geometry in nanometric cutting single-crystal copper via MD simulation. Adv Mater Res. 2012. DOI:10.4028/www.scientific.net/AMR.421.123
  • Akbarian S, Dehghani K. On the molecular dynamics simulation of fatigue behavior of pre-cracked aluminum chip for NEMS application: effect of cyclic loading mode and surface roughness geometry. Int J Fatigue. 2020;135:11, DOI:10.1016/j.ijfatigue.2020.105570
  • Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14:33–38. DOI:10.1016/0263-7855(96)00018-5
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng. 2009;18:015012, DOI:10.1088/0965-0393/18/1/015012
  • Wang G, Feng Z, Zheng Q, et al. Molecular dynamics simulation of nano-polishing of single crystal silicon on non-continuous surface. Mater Sci Semicond Process. 2020;118; DOI:10.1016/j.mssp.2020.105168
  • Hoover G. Canonical dynamics: equilibrium phase-space distributions. Phys Rev Gen Phys. 1985;31:1695–1697.
  • Wang H, You Y, Wang N, et al. MD simulation of tool wear behaviour based on changes of tool rake and flank angle caused by diamond tool position adjustment. Mol Simul. 2019;45:509–517.
  • Vahid Hosseini S, Vahdati M, Shokuhfar A. Investigation of interatomic potential on chip formation mechanism in nanometric cutting using MD simulation. Defect Diffus Forum. 2011;312-315:983–988. DOI:10.4028/www.scientific.net/DDF.312-315.983
  • Xichun U, Saurav G, Waleed B. A theoretical assessment of surface defect machining and hot machining of nanocrystaliine silicon carbide. J Manuf Sci Eng. 2014;136:1–12.
  • Lu W, Jianfeng J, Peijun Y, et al. Graphene adhesion mechanics on iron substrates: insight from molecular dynamic simulations. Crystals. 2019;579; DOI:10.3390/cryst9110579
  • Dang Q, Cai J, Yu D, et al. Effect of material microstructure on tool wear behavior during machining additively manufactured Ti6Al4V. Arch Civ Mech Eng. 2020;20:15, DOI:10.1007/s43452-019-0007-7
  • Jin Z J, Xie F, Guo X G, et al. Wear mechanism of single crystal diamond tool against mold steel by molecular dynamics simulation. Nanotechnol Precis Eng. 2016;14:410–415. DOI:10.13494/j.npe.20160021
  • Yaghoobi M, Voyiadjis Z. Effect of boundary conditions on the MD simulation of nanoindentation. Comput Mater Sci. 2014;95:626–636. DOI:10.1016/j.commatsci.2014.08.013
  • Lina K, Georgios A, Panagiotis A, et al. Data driven inference for the repulsive exponent of the Lennard-Jones potential in molecular dynamics simulations. Sci Rep. 2017;1; DOI:10.1038/s41598-017-16314-4
  • Loulijat H, Zerradi H, Dezairi A, et al. Effect of Morse potential as model of solid–solid inter-atomic interaction on the thermal conductivity of nanofluids. Adv Powder Technol. 2015;26:180–187. DOI:10.1016/j.apt.2014.09.006
  • Min K, Yoon L, Lim L. Molecular dynamics simulation of melting of silicene, 2018.
  • Tersoff J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B. 1989;39:5566–5568. DOI:10.1103/PhysRevB.39.5566
  • Chen Y, Han H, Fang F, et al. MD simulation of nanometric cutting of copper with and without water lubrication. Sci China Technol Sci. 2014;57:1154–1159. DOI:10.1007/s11431-014-5519-z
  • Tapasa K, Barashev V, Bacon J, et al. Computer simulation of carbon diffusion and vacancy–carbon interaction in α-iron. Acta Mater. 2007;55:1–11. DOI:10.1016/j.actamat.2006.05.029
  • Guo S-J, Yang Q-S, He X Q, et al. Modeling of interface cracking in copper–graphite composites by MD and CFE method. Compos Part B. 2014;58:586–592. DOI:10.1016/j.compositesb.2013.10.042
  • Fan Z. The unit of stress in lammps and how to count the stress in the meaning of macro mechanics, 2019.
  • Roman E, Kwan K, Cranford W. Mechanical properties and defect sensitivity of diamond nanothreads. Nano Lett.. 2015;15:1585–1590. DOI:10.1021/nl5041012
  • Lee G. Computational materials science: an introduction. CRC; 2011.
  • George V, Mohammadreza Y. Size effects during nanoindentation: molecular dynamics simulation. Cham: Springer International Publishing; 2018.
  • Zhu Y, Zhang Y, Qi S, et al. Titanium nanometric cutting process based on molecular dynamics. Rare Metal Mater Eng. 2016;45:897–900. DOI:10.1016/S1875-5372(16)30096-0
  • Cao Y. Molecular dynamics simulations of diamond tool graphitization wear in ultra-precision cutting of single crystal silicon. Qinhuangdao: Yanshan University; 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.