74
Views
0
CrossRef citations to date
0
Altmetric
Articles

Fluorinated caffeic acid phenethyl ester antioxidant with enhanced pharmacological activities: a theoretical study

&
Pages 58-66 | Received 01 May 2020, Accepted 14 Dec 2020, Published online: 05 Jan 2021

References

  • Juillerat-Jeanneret L, Schmitt F. Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the grail. Med Res Rev. 2007;27:574–590. doi:10.1002/med.20086.
  • Heidelberger C, Chaudhuri NK, Danneberg P, et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature. 1957;179:663–666. doi:10.1038/179663a0.
  • Wong DT, Bymaster FP, Engleman EA. Prozac (fluoxetine, lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication. Life Sci. 1995;57:411–441. doi:10.1016/0024-3205(95)00209-O.
  • Roman DL, Walline CC, Rodriguez GJ, et al. Interactions of antidepressants with the serotonin transporter: a contemporary molecular analysis. Eur J Pharmacol. 2003;479:53–63. doi:10.1016/j.ejphar.2003.08.056.
  • Mabe S, Eller J, Champney WS. Structure-activity relationships for three macrolide antibiotics in haemophilus influenza. Curr Microbiol. 2004;49:248–254. doi:10.1007/s00284-004-4312-9.
  • Fera MT, Giannone M, Pallio S, et al. Antimicrobial activity and postantibiotic effect of flurithromycin against Helicobacter pylori strains. Int J Antimicrob Agents. 2001;17:151–154. doi:10.1016/S0924-8579(00)00315-0.
  • Elgemeie Galal. Thioguanine, mercaptopurine: their analogs and nucleosides as antimetabolites. Curr Pharm Des. 2003;9:2627–2642. doi:10.2174/1381612033453677.
  • Nagai K, Nagasawa K, Kihara Y, et al. Anticancer nucleobase analogues 6-mercaptopurine and 6-thioguanine are novel substrates for equilibrative nucleoside transporter 2. Int J Pharm. 2007;333:56–61. doi:10.1016/j.ijpharm.2006.09.044.
  • Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 2002;3:415–424. doi:10.1016/S1470-2045(02)00788-X.
  • Tee-ngam P, Nunant N, Rattanarat P, et al. Simple and rapid determination of ferulic acid levels in food and cosmetic samples using paper-based platforms. Sensors. 2013;13:13039–13053. doi:10.3390/s131013039.
  • Chambers RD. Fluorine in organic chemistry. Oxford: Blackwell Publishing; 2000.
  • Morgenthaler M, Schweizer E, Hoffmann-Röder A, et al. Predicting and tuning physicochemical properties in lead optimization: amine basicities. ChemMedChem. 2007;2:1100–1115. doi:10.1002/cmdc.200700059.
  • Plosker GL, Perry CM, Goa KL. Efavirenz: a pharmacoeconomic review of its use in HIV infection. Pharmacoeconomics. 2001;19:421–436. doi:10.2165/00019053-200119040-00009.
  • Adkins JC, Noble S. Efavirenz. Drugs. 1998;56:1055–1064. doi:10.2165/00003495-199856060-00014.
  • Purser S, Moore PR, Swallow S, et al. Fluorine in medicinal chemistry. Chem Soc Rev. 2008;37:320–330. doi:10.1039/B610213C.
  • Yang C, Wu J, Zhang R, et al. Caffeic acid phenethyl ester (CAPE) prevents transformation of human cells by arsenite (As) and suppresses growth of As-transformed cells. Toxicology. 2005;213:81–96. doi:10.1016/j.tox.2005.05.011.
  • Chung T-W, Moon S-K, Chang Y-C, et al. Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. FASEB J. 2004;18:1670–1681. doi:10.1096/fj.04-2126com.
  • Fesen MR, Pommier Y, Leteurtre F, et al. Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem Pharmacol. 1994;48:595–608. doi:10.1016/0006-2952(94)90291-7.
  • Park JH, Lee JK, Kim HS, et al. Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice. Int Immunopharmacol. 2004;4:429–436. doi:10.1016/j.intimp.2004.01.013.
  • Fitzpatrick LR, Wang J, Le TJ. Caffeic acid phenethyl ester, an inhibitor of nuclear factor-κB: attenuates bacterial peptidoglycan polysaccharide-induced colitis in rats. Pharmacol Exp Ther. 2001;299:915–920.
  • Terao J, Karasawa H, Arai H, et al. Peroxyl radical scavenging activity of caffeic acid and its related phenolic compounds in solution. Biosci biotechnol Biochem. 1993;57:1204–1205. doi:10.1271/bbb.57.1204.
  • Koltuksuz U, Ozen S, Uz E, et al. Caffeic acid phenethyl ester prevents intestinal reperfusion injury in rats. Pediatr Surg. 1999;34:1458–1462. doi:10.1016/S0022-3468(99)90103-3.
  • Ilhan A, Koltuksuz U, Ozen S, et al. The effects of caffeic acid phenethyl ester (CAPE) on spinal cord ischemia/reperfusion injury in rabbits. Eur J Cardiothorac Surg. 1999;16:458–463. doi:10.1016/S1010-7940(99)00246-8.
  • Ozyurt H, Irmak MK, Akyol O, et al. Caffeic acid phenethyl ester changes the indices of oxidative stress in serum of rats with renal ischaemia-reperfusion injury. Cell Biochem Funct. 2001;19:259–263. doi:10.1002/cbf.923.
  • Celik O, Turkoz Y, Hascalik S, et al. The protective effect of caffeic acid phenethyl ester on ischemia-reperfusion injury in rat ovary. Eur J Obstet Gynecol Reprod Biol. 2004;117:183–188. doi:10.1016/j.ejogrb.2004.05.007.
  • Parlakpinar H, Sahna E, Acet A, et al. Protective effect of caffeic acid phenethyl ester (CAPE) on myocardial ischemia–reperfusion-induced apoptotic cell death. Toxicology. 2005;209:1–14. doi:10.1016/j.tox.2004.10.017.
  • Calikoglu M, Tamer L, Sucu N, et al. The effects of caffeic acid phenethyl ester on tissue damage in lung after hindlimb ischemia-reperfusion. Pharmacol Res. 2003;48:397–403. doi:10.1016/S1043-6618(03)00156-7.
  • Irmak MK, Koltuksuz U, Kutlu NO, et al. The effect of caffeic acid phenethyl ester on ischemia-reperfusion injury in comparison with α-tocopherol in rat kidneys. Urol Res. 2001;29:190–193. doi:10.1007/s002400100185.
  • Irmak MK, Fadillioglu E, Sogut S, et al. Effects of caffeic acid phenethyl ester and alpha-tocopherol on reperfusion injury in rat brain. Cell Biochem Funct. 2003;21:283–289. doi:10.1002/cbf.1024.
  • Hsu LY, Lin CF, Hsu WC, et al. Evaluation of polyphenolic acid esters as potential antioxidants. Biol Pharm Bull. 2005;28:1211–1215. doi:10.1248/bpb.28.1211.
  • Liao H-F, Chen Y-Y, Liu J-J, et al. Inhibitory effect of caffeic acid phenethyl ester on angiogenesis, tumor invasion, and metastasis. J Agric Food Chem. 2003;51:7907–7912. doi:10.1021/jf034729d.
  • Wang X, Stavchansky S, Bowman PD, et al. Cytoprotective effect of caffeic acid phenethyl ester (CAPE) and catechol ring-fluorinated CAPE derivatives against menadione-induced oxidative stress in human endothelial cells. Bioorg Med Chem.. 2006;14:4879–4887. doi:10.1016/j.bmc.2006.03.015.
  • Wang X, Pang J, Maffuccic JA, et al. Pharmacokinetics of caffeic acid phenethyl ester and its catechol-ring fluorinated derivative following intravenous administration to rats. Biopharm Drug Dispos. 2009;30:221–228. doi:10.1002/bdd.657.
  • Becke AD. Density-functional thermochemistry. III: the role of exact exchange. J Chem Phys. 1993;98:5648–5652. doi:10.1063/1.462066.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision D.01. Wallingford (CT): Gaussian, Inc.; 2009.
  • Saha B, Bhattacharyya PK. Adsorption of amino acids on boron and/or nitrogen doped functionalized graphene: a density functional study. Comput Theor Chem. 2016;1086:45–51. doi:10.1016/j.comptc.2016.04.017.
  • Ezzati N, Mahjoub AR, Shahrnoy AA, et al. Amino acid-functionalized hollow mesoporous silica nanospheres as efficient biocompatible drug carriers for anticancer applications. Int J Pharm. 2019;572:118709, doi:10.1016/j.ijpharm.2019.118709.
  • Yadav S, Singh S, Goel N, et al. Investigations on functionalized GO as selective and efficient amino acids carrier supported by density functional calculations. Appl Surf Sci. 2019;497:143761, doi:10.1016/j.apsusc.2019.143761.
  • Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev. 2005;105:2999–3094. doi:10.1021/cr9904009.
  • Buckingham AD, Orr BJ. Molecular hyperpolarisabilities. Q Rev Chem Soc. 1967;21:195–212. doi:10.1039/QR9672100195.
  • McLean AD, YoShiMine M. Theory of molecular polarizabilities. J Chem Phys. 1967;47:1927–1935. doi:10.1063/1.1712220.
  • Morell C, Grand A, Labbe AT, et al. Is hyper-hardness more chemically relevant than expected? J Mol Model. 2013;19:2893–2900. doi:10.1007/s00894-013-1778-z.
  • Reed AE, Curtiss LA, Weinhold FA. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev. 1988;88:899–926. doi:10.1021/cr00088a005.
  • Biegler KF, Schnbohm J, Bayles D. AIM2000 – A program to analyze and visualize atoms in molecules. 2001;22(5):545–559.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.