145
Views
1
CrossRef citations to date
0
Altmetric
Articles

Substituent effects on detonation properties and stability of energetic dipicrylamine derivatives from a theoretical study

, &
Pages 67-73 | Received 07 Apr 2020, Accepted 17 Dec 2020, Published online: 12 Jan 2021

References

  • Badgujar DM, Talawar MB, Asthana SN, et al. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151(2–3):289–305.
  • Talawar MB, Sivabalan R, Mukundan T, et al. Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater. 2009;161(2–3):589–607.
  • Gao H, Shreeve JM. Azole-based energetic salts. Chem Rev. 2011;111(11):7377–7436.
  • Snyder CJ, Wells LA, Chavez DE, et al. Polycyclic N-oxides: high performing, low sensitivity energetic materials. Chem Commun. 2019;55(17):2461–2464.
  • Liu Y, Zhao G, Tang Y, et al. Multipurpose [1, 2, 4] triazolo [4, 3-b][1, 2, 4, 5] tetrazine-based energetic materials. J Mater Chem. 2019;7(13):7875–7884.
  • Barton LM, Edwards JT, Johnson EC, et al. Impact of stereo- and regiochemistry on energetic materials. J Am Chem Soc. 2019;141(32):12531–12535.
  • Klapötke TM, Petermayer C, Piercey DG, et al. 1,3-Bis(nitroimido)-1,2,3-triazolate anion, the N-nitroimide moiety, and the strategy of alternating positive and negative charges in the design of energetic materials. J Am Chem Soc. 2012;134(51):20827–20836.
  • Zhang J, Shreeve JM. 3,3′-Dinitroamino-4,4′-azoxyfurazan and its derivatives: an assembly of diverse N-O building blocks for high-performance energetic materials. J Am Chem Soc. 2014;136(11):4437–4445.
  • Friedrich M, Gálvez-Ruiz JC, Klapötke TM, et al. BTA copper complexes. Inorg Chem. 2005;44(22):8044–8052.
  • Liu X, Yang Q, Su Z, et al. 3D high-energy-density and low sensitivity materials: synthesis, structure and physicochemical properties of an azide-Cu(ii) complex with 3,5-dinitrobenzoic acid. RSC Adv. 2014;4(31):16087–16093.
  • Zhang Q, Shreeve JM. Metal–organic frameworks as high explosives: a new concept for energetic materials. Angew Chem Int Ed. 2014;53(10):2540–2542.
  • Wang Q, Shao Y, Lu M. Amino-tetrazole functionalized fused triazolo-triazine and tetrazolo-triazine energetic materials. Chem Commun. 2019;55(43):6062–6065.
  • Long GT, Vyazovkin S, Brems BA, et al. Competitive vaporization and decomposition of liquid RDX. J Phys Chem B. 2000;104(11):2570–2574.
  • Just CL, Schnoor JL. Phytophotolysis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in leaves of reed canary grass. Environ Sci Technol. 2004;38(1):290–295.
  • Zhang S, Nguyen HN, Truong TN. Theoretical study of mechanisms, thermodynamics, and kinetics of the decomposition of gas-phase α-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine). J Phys Chem A. 2003;107(16):2981–2989.
  • Zhang S, Truong TN. Branching ratio and pressure dependent rate constants of multichannel unimolecular decomposition of gas-phase α-HMX: an Ab initio dynamics study. J Phys Chem A. 2001;105(11):2427–2434.
  • Srinivas D, Ghule VD, Muralidharan K. Synthesis of nitrogen-rich imidazole, 1,2,4-triazole and tetrazole-based compounds. RSC Adv. 2014;4(14):7041–7051.
  • Wei T, Zhu W, Zhang X, et al. Molecular design of 1,2,4,5-tetrazine-based high-energy density materials. J Phys Chem A. 2009;113(33):9404–9412.
  • Politzer P, Lane P, Murray J. Computational analysis of relative stabilities of polyazine N-oxides. Struct Chem. 2013;24(6):1965–1974.
  • Wu J-T, Zhang J-G, Yin X, et al. Energetic oxygen-containing tetrazole salts based on 3,4-diaminotriazole. Chem Asian J. 2015;10(5):1239–1244.
  • Thottempudi V, Gao H, Shreeve JM. Trinitromethyl-substituted 5-nitro- or 3-Azo-1,2,4-triazoles: synthesis, characterization, and energetic properties. J Am Chem Soc. 2011;133(16):6464–6471.
  • Yin P, Zhang J, He C, et al. Polynitro-substituted pyrazoles and triazoles as potential energetic materials and oxidizers. J Mater Chem A. 2014;2(9):3200–3208.
  • Zhang J, Zhang Q, Vo TT, et al. Energetic salts with π-stacking and hydrogen-bonding interactions lead the way to future energetic materials. J Am Chem Soc. 2015;137(4):1697–1704.
  • Debies TP, Rabalais JW. Photoelectron spectra of substituted benzenes. III. bonding with group V substituents. Inorg Chem. 1974;13(2):308–312.
  • Haink HJ, Adams JE, Huber JR. The electronic structure of aromatic amines: photoelectron spectroscopy of diphenylamine, iminobibenzyl, acridan and carbazole. Ber Bunsen-Ges Phys Chem. 1974;78(5):436–440.
  • Huang H, Zhou Z, Song J, et al. Energetic salts based on dipicrylamine and its amino derivative. Chem Eur J. 2011;17(48):13593–13602.
  • Frisch M, Trucks G, Schlegel HB, et al. Gaussian 09. Wallingford (CT): Gaussian, Inc; 2009.
  • Ghule VD, Deswal S, Devi A, et al. Computer-aided design of energetic tris(tetrazolyl)amine derivatives and salts. Ind Eng Chem Res. 2016;55(4):875–881.
  • Byrd EFC, Rice BM. Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A. 2006;110(3):1005–1013.
  • Kamlet MJ, Jacobs SJ. Chemistry of detonations. I. A simple method for calculating detonation properties of C-H-N-O explosives. J Chem Phys. 1968;48(1):23–35.
  • Bulat F, Toro-Labbé A, Brinck T, et al. Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model. 2010;16(11):1679–1691.
  • Politzer P, Martinez J, Murray JS, et al. An electrostatic interaction correction for improved crystal density prediction. Mol Phys. 2009;107(19):2095–2101.
  • Blanksby SJ, Ellison GB. Bond dissociation energies of organic molecules. Acc Chem Res. 2003;36(4):255–263.
  • Chi W-J, Li L-L, Li B-T, et al. Looking for high energy density compounds among polynitraminecubanes. J Mol Model. 2013;19(2):571–580.
  • Chi W, Li L, Li B, et al. Density functional calculation on a high energy density compound having the formula C2OH4−n(NO2)n. Struct Chem. 2012;23(6):1837–1841.
  • Jafari M, Keshavarz MH, Noorbala MR, et al. A reliable method for prediction of the condensed phase enthalpy of formation of high nitrogen content materials through their gas phase information. ChemistrySelect. 2016;1(16):5286–5296.
  • Jafari M, Keshavarz MH. Simple approach for predicting the heats of formation of high nitrogen content materials. Fluid Phase Equilib. 2016;415:166–175.
  • Tan B, Huang M, Long X, et al. Computational assessment of several hydrogen-free high energy compounds. J Mol Graph Model. 2016;63:85–90.
  • Nazari B, Keshavarz MH, Hamadanian M, et al. Reliable prediction of the condensed (solid or liquid) phase enthalpy of formation of organic energetic materials at 298 K through their molecular structures. Fluid Phase Equilib. 2016;408:248–258.
  • Huynh MHV, Hiskey MA, Chavez DE, et al. Synthesis, characterization, and energetic properties of diazido heteroaromatic high-nitrogen C-N compound. J Am Chem Soc. 2005;127(36):12537–12543.
  • Chavez DE, Hiskey MA, Gilardi RD. 3,3′-Azobis(6-amino-1,2,4,5-tetrazine): a novel high-nitrogen energetic material. Angew Chem. 2000;112(10):1861–1863.
  • Chi W-J, Li L-L, Li B-T, et al. Density functional calculations for a high energy density compound of formula C6H6−n(NO2)n. J Mol Model. 2012;18(8):3695–3704.
  • Chi W, Li B, Wu H. Density function theory study on energetic nitro-triaziridine derivatives. Struct Chem. 2012;24(2):375–381.
  • Chi W, Li Z. Theoretical prediction of detonation performanceand stability for energetic polydinitroaminoprismanes. RSC Adv. 2015;5(10):7766–7772.
  • Chi W-J, Li Z-S. Molecular design of prismane-based potential energetic materials with high detonation performance and low impact sensitivity. CR Chim. 2015;18(12):1270–1276.
  • Keshavarz MH. Novel method for predicting densities of polynitro arene and polynitro heteroarene explosives in order to evaluate their detonation performance. J Hazard Mater. 2009;165(1):579–588.
  • Keshavarz MH, Pouretedal HR. An empirical method for predicting detonation pressure of CHNOFCl explosives. Thermochim Acta. 2004;414(2):203–208.
  • Keshavarz MH, Kamalvand M, Jafari M, et al. An improved simple method for the calculation of the detonation performance of CHNOFCl, aluminized and ammonium nitrate explosives. Cent Eur J Energ Mater. 2016;13(2):381–396.
  • Liu H, Wang F, Wang G-X, et al. Theoretical investigations on structure, density, detonation properties, and sensitivity of the derivatives of PYX. J Comput Chem. 2012;33(22):1790–1796.
  • Keshavarz MH, Seif F. Improved approach to predict the power of energetic materials. Propellants Explos Pyrotech. 2013;38(5):709–714.
  • Aakeröy CB, Wijethunga TK, Desper J. Crystal engineering of energetic materials: Co-crystals of ethylenedinitramine (EDNA) with modified performance and improved chemical stability. Chem Eur J. 2015;21(31):11029–11037.
  • Klapötke TM, Schmid PC, Schnell S, et al. Thermal stabilization of energetic materials by the aromatic nitrogen-rich 4, 4′, 5, 5′-tetraamino-3, 3′-bi-1, 2, 4-triazolium cation. J Mater Chem A. 2015;3(6):2658–2668.
  • Cao C, Gao S. Two dominant factors influencing the impact sensitivities of nitrobenzenes and saturated nitro compounds. J Phys Chem B. 2007;111(43):12399–12402.
  • Tan B, Long X, Peng R, et al. Two important factors influencing shock sensitivity of nitro compounds: bond dissociation energy of X-NO2 (X = C, N, O) and mulliken charges of nitro group. J Hazard Mater. 2010;183(1):908–912.
  • Li J. A quantitative relationship for the shock sensitivities of energetic compounds based on X-NO2 (X = C, N, O) bond dissociation energy. J Hazard Mater. 2010;180(1):768–772.
  • Pospíšil M, Vávra P, Concha MC, et al. A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model. 2010;16(5):895–901.
  • Keshavarz MH, Mousaviazar A, Hayaty M. A novel approach for assessment of thermal stability of organic azides through prediction of their temperature of maximum mass loss. J Therm Anal Calorim. 2017;129(3):1659–1665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.