177
Views
0
CrossRef citations to date
0
Altmetric
Articles

Nanoscrolls made from boron nitride nanotubes with helical fissure

, , , , , ORCID Icon & show all
Pages 346-353 | Received 26 Oct 2020, Accepted 31 Dec 2020, Published online: 08 Feb 2021

References

  • Sha HY, Zhang SL, Faller R. Molecular investigation of gas adsorption, separation, and transport on carbon nanoscrolls: a combined grand canonical Monte Carlo and molecular dynamics study. Carbon N Y. 2018;132:401–410. doi:10.1016/j.carbon.2018.02.078.
  • Karimi H, Ahmadi MT, Khosrowabadi E, et al. Analytical prediction of liquid-gated graphene nanoscroll biosensor performance. RSC Adv. 2014;4:16153–16162. doi:10.1039/C3RA47432A.
  • Zeng F, Kuang Y, Liu G, et al. Supercapacitors based on high-quality graphene scrolls. Nanoscale. 2012;4:3997–4001. doi:10.1039/C2NR30779K.
  • Yan M, Wang F, Han C, et al. Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance. J Am Chem Soc. 2013;135:18176–18182. doi: 10.1021/ja409027s.
  • Cheng Y, Shi XH, Pugno NM, et al. Substrate-supported carbon nanoscroll oscillator. Physica E. 2012;44:955–959. doi:10.1016/j.physe.2011.07.016.
  • Krylova KA, Baimova JA, Lobzenko IP, et al. Crumpled graphene as a hydrogen storage media: atomistic simulation. Physica B: Condensed Matter. 2020;583:412020. doi:10.1016/j.physb.2020.412020.
  • Zheng B, Xu Z, Gao C. Mass production of graphene nanoscrolls and their application in high rate performance supercapacitors. Nanoscale. 2016;8:1413–1420. doi:10.1039/C5NR07067H.
  • Zheng J, Liu H, Wu B, et al. Production of high-quality carbon nanoscrolls with microwave spark assistance in liquid nitrogen. Adv Mater. 2011;23:2460–2463. doi:10.1002/adma.201004759.
  • Fang X, Wei P, Wang L, et al. Transforming monolayer transition-metal dichalcogenide nanosheets into one-dimensional nanoscrolls with high photosensitivity. ACS Appl Mater Interfaces. 2018;10:13011–13018. doi:10.1021/acsami.8b01856.
  • Chen Z, Wang J, Pan D, et al. Mimicking a dog’s nose: scrolling graphene nanosheets. ACS Nano. 2018;12:2521–2530. doi:10.1021/acsnano.7b08294.
  • Khaledian M, Ismail R, Saeidmanesh M, et al. Sensitivity modelling of graphene nanoscroll-based NO2 gas sensors. Plasmonics. 2015;10:1133–1140. doi:10.1007/s11468-015-9905-6.
  • Berman D, Deshmukh SA, Sankaranarayanan SKRS, et al. Macroscale superlubricity enabled by graphene nanoscroll formation. Science. 2015;348:1118–1122. doi:10.1126/science.1262024.
  • Cui XP, Kong ZZ, Gao EL, et al. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nat Commun. 2018;9:1301. doi:10.1038/s41467-018-03752-5.
  • Deng W, You C, Chen X, et al. High-performance photodiode based on atomically thin WSe2/MoS2 nanoscroll integration. Small. 2019;15:1901544. doi:10.1002/smll.201970160.
  • Wang Y, Jiang C, Chen Q, et al. Highly promoted carrier mobility and intrinsic stability by rolling up monolayer black phosphorus into nanoscrolls. J Phys Chem Lett. 2018;9:6847–6852. doi:10.1021/acs.jpclett.8b02913.
  • Xu WN, Qin Z, Chen CT, et al. Ultrathin thermoresponsive self-folding 3D graphene. Sci Adv. 2017;3:e1701084. doi:10.1126/sciadv.1701084.
  • Bejagam KK, Singh S, Deshmukh SA. Nanoparticle activated and directed assembly of graphene into a nanoscroll. Carbon N Y. 2018;134:43–52. doi:10.1016/j.carbon.2018.03.077.
  • Mohanapriya K, Jha N. Fabrication of one dimensional graphene nanoscrolls for high performance supercapacitor application. Appl Surf Sci. 2018;449:461–467. doi:10.1016/j.apsusc.2017.12.186.
  • Patra N, Wang B, Král P. Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett. 2009;9:3766–3771. doi:10.1021/nl9019616.
  • Li YF, Li H, Zhang K, et al. The theoretical possibility of a graphene sheet spontaneously scrolling round an iron nanowire. Carbon N Y. 2012;50:566–576. doi:10.1016/j.carbon.2011.09.015.
  • Xu SQ, Fu HJ, Li YF, et al. Novel scroll peapod produced by spontaneous scrolling of graphene onto fullerene string. Phys Chem Chem Phys. 2016;18:10138–10143. doi:10.1039/C6CP00385K.
  • Annett J, Cross GLW. Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature. 2016;535:271–275. doi:10.1038/nature18304.
  • Meng JL, Wang GL, Li XM, et al. Rolling up a monolayer MoS2 sheet. Small. 2016;12:3770–3774. doi:10.1002/smll.201601413.
  • Wang ZG, Wu HH, Li Q, et al. Self-scrolling MoS2 metallic wires. Nanoscale. 2018;10:18178–18185. doi:10.1039/C8NR04611E.
  • Li YF. Boron-nitride nanotube triggered self-assembly of hexagonal boron-nitride nanostructure. Phys Chem Chem Phys. 2014;16:20689–20696. doi:10.1039/C4CP02578D.
  • Chen X, Boulos RA, Dobson JF, et al. Shear induced formation of carbon and boron nitride nano-scrolls. Nanoscale. 2013;5:498–502. doi.org/10.1039/C2NR33071G.
  • Siahlo AI, Poklonski NA, Lebedev AV, et al. Structure and energetics of carbon, hexagonal boron nitride, and carbon/hexagonal boron nitride single-layer and bi-layer nanoscrolls. Phys Rev Mater. 2018;2:036001. doi:10.1103/PhysRevMaterials.2.036001.
  • Perim E, Galvao DS. Novel nanoscroll structures from carbon nitride layers. Chem Phys Chem. 2014;15:2367–2371. doi:10.1557/opl.2015.465.
  • Liu ZG, Gao JF, Zhang G, et al. From two-dimensional nano-sheets to roll-up structures: expanding the family of nanoscroll. Nanotechnology. 2017;28:385704. doi:10.1088/1361-6528/aa7bf8.
  • Solis DA, Borges DD, Woellner CF, et al. Structural and thermal stability of graphyne and graphdiyne nanoscroll structures. ACS Appl Mater Interfaces. 2019;11:2670–2676. doi:10.1021/acsami.8b03481.
  • Jasz A, Rak A, Ladjanszki I, et al. Optimized GPU implementation of Merck molecular force field and universal force field. J Mol Struct. 2019;1188:227–233. doi:10.1016/j.molstruc.2019.04.007.
  • Rappe AK, Colwell KS, Casewit CJ. Application of a universal force field to metal complexes. Inorg Chem. 1993;32:3438–3450. doi:10.1021/ic00068a012.
  • Casewit CJ, Colwell KS, Rappe AK. Application of a universal force field to main group compounds. J Am Chem Soc. 1992;114:10046–10053. doi:10.1021/ja00051a042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.