223
Views
1
CrossRef citations to date
0
Altmetric
Articles

Thermal conductivity of perfect and defective carbon nanotubes functionalized with carbene: a molecular dynamics study

, ORCID Icon & ORCID Icon
Pages 354-362 | Received 25 Mar 2020, Accepted 04 Jan 2021, Published online: 13 Jan 2021

References

  • Bachtold A, Hadley P, Nakanishi T, et al. Logic circuits based on carbon nanotubes. Physica E. 2003;16(1):42–46.
  • Aloui W, Ltaief A, Bouazizi A. Transparent and conductive multi walled carbon nanotubes flexible electrodes for optoelectronic applications. Superlattices Microstruct. 2013;64:581–589.
  • Sadeghi F, Ajori S, Ansari R. Continuum modeling of ion-selective membranes constructed from functionalized carbon nanotubes. Eur Phys J Plus. 2020;135(7):553.
  • Ajori S, Ansari R, Sadeghi F. Molecular dynamics study of gigahertz nanomechanical oscillators based on an ion inside a series of electrically charged carbon nanotubes. Eur J Mech A. 2018;69:45–54.
  • Zang X, Jiang Y, Sanghadasa M, et al. Chemical vapor deposition of 3D graphene/carbon nanotubes networks for hybrid supercapacitors. Sens Actuat A Phys. 2020;304:111886.
  • Lee SW, Campbell EE. Nanoelectromechanical devices with carbon nanotubes. Curr Appl Phys. 2013;13(8):1844–1859.
  • Zang X, Zhou Q, Chang J, et al. Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron Eng. 2015;132:192–206.
  • Zhao S, Song Z, Cui J, et al. Improving dispersion and integration of single-walled carbon nanotubes in epoxy composites by using a reactive noncovalent dispersant. J Polym Sci: Polym Chem. 2012;50(21):4548–4556.
  • Zhu J, Kim J, Peng H, et al. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett. 2003;3(8):1107–1113.
  • Yuan JM, Fan ZF, Chen XH, et al. Preparation of polystyrene–multiwalled carbon nanotube composites with individual-dispersed nanotubes and strong interfacial adhesion. Polymer (Guildf). 2009;50(14):3285–3291.
  • Liu C, Zhang Q, Stellacci F, et al. Carbene-functionalized single-walled carbon nanotubes and their electrical properties. Small. 2011;7(9):1257–1263.
  • Ajori S, Haghighi S, Ansari R. Tensile characteristics of carbene-functionalized CNTs subjected to physisorption of polymer chains: a molecular dynamics study. J Mol Model. 2019;25(11):318.
  • Haghighi S, Ansari R, Ajori S. A molecular dynamics study on the interfacial properties of carbene-functionalized graphene/polymer nanocomposites. Int J Mech Mater Des. 2020;16:387–400.
  • Ajori S, Boroushak SH, Ansari R. Fracture analysis and tensile properties of perfect and defective carbon nanotubes functionalized with carbene using molecular dynamics simulations. J Braz Soc Mech Sci Eng. 2020;42(9):1–11.
  • Yu C, Shi L, Yao Z, et al. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 2005;5(9):1842–1846.
  • Fujii M, Zhang X, Xie H, et al.. Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett. 2005;95(6):065502.
  • Pop E, Mann D, Wang Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006;6(1):96–100.
  • Hsu IK, Kumar R, Bushmaker A, et al.. Optical measurement of thermal transport in suspended carbon nanotubes. Appl Phys Lett. 2008;92(6):063119.
  • Li Q, Liu C, Wang X, et al. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Nanotechnology. 2009;20(14):145702.
  • Dresselhaus MS, Eklund PC. Phonons in carbon nanotubes. Adv Phys. 2000;49(6):705–814.
  • Maruyama S. A molecular dynamics simulation of heat conduction in finite length SWNTs. Phys Condens Mater. 2002;323(1–4):193–195.
  • Maruyama S. A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube. Microscale Thermophys Eng. 2003;7(1):41–50.
  • Padgett CW, Brenner DW. Influence of chemisorption on the thermal conductivity of single-wall carbon nanotubes. Nano Lett. 2004;4(6):1051–1053.
  • Moreland JF. The disparate thermal conductivity of carbon nanotubes and diamond nanowires studied by atomistic simulation. Microsc Thermophys Eng. 2004;8(1):61–69.
  • Ajori S, Haghighi S, Ansari R. A molecular dynamics study on the thermal conductivity of endohedrally functionalized single-walled carbon nanotubes with gold nanowires. Eur Phys J. 2018;72(2):1–9.
  • Pashmforoush F, Ajori S. The adsorption characteristics and thermo-mechanical properties of BxCyNz heteronanotubes under physical adsorption of Ni(II)-tetramethyldibenzotetraaza[14]annulene (NiTMTAA): Insight from molecular dynamics approach. Comput Mater Sci. 2020;176:109554.
  • Zhang G, Li B. Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature. J Chem Phys. 2005;123(11):114714.
  • Donadio D, Galli G. Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation. Phys Rev Lett. 2007;99(25):255502.
  • Pashmforoush F, Ajori S, Azimi HR. Interfacial characteristics and thermo-mechanical properties of calcium carbonate/polystyrene nanocomposite. Mater Chem Phys. 2020;247:122871.
  • Lukes JR, Zhong H. Thermal conductivity of individual single-wall carbon nanotubes; 2007.
  • Rui-Qin P, Zi-Jian X, Zhi-Yuan Z. Length dependence of thermal conductivity of single-walled carbon nanotubes. Chin Phys Lett. 2007;24(5):1321.
  • Alaghemandi M, Algaer E, Böhm MC, et al. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations. Nanotechnology. 2009;20(11):115704.
  • Cao A, Qu J. Size dependent thermal conductivity of single-walled carbon nanotubes. J Appl Phys. 2012;112(1):013503.
  • Sääskilahti K, Oksanen J, Volz S, et al. Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics. Phys Rev B. 2015;91(11):115426.
  • Chang IL, Li CS, Wang GS, et al. Does equilibrium or nonequilibrium molecular dynamics correctly simulate thermal transport properties of carbon nanotubes? Phys Rev Mater. 2020;4(3):036001.
  • Dai-Li F, Yan-Hui F, Yang C, et al. Effects of doping, Stone–Wales and vacancy defects on thermal conductivity of single-wall carbon nanotubes. Chin Phys B. 2013;22(1):016501.
  • Boroushak SH, Ansari R, Ajori S. Molecular dynamics simulations of the thermal conductivity of cross-linked functionalized single- and double-walled carbon nanotubes with polyethylene chains. Diam Relat Mater. 2018;86:173–178.
  • Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys. 1997;106(14):6082–6085.
  • Stuart SJ, Tutein AB, Harrison JA. A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys. 2000;112(14):6472–6486.
  • Brenner DW, Shenderova OA, Harrison JA, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matt. 2002;14(4):783–802.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.
  • Zhang CL, Shen HS. Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation. J Phys Appl Phys. 2008;41(5):055404.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford University Press; 2017.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695–1697.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.