523
Views
2
CrossRef citations to date
0
Altmetric
Articles

A modified many-body dissipative particle dynamics model for mesoscopic fluid simulation: methodology, calibration, and application for hydrocarbon and water

, ORCID Icon, , , &
Pages 363-375 | Received 21 Sep 2020, Accepted 02 Jan 2021, Published online: 04 Feb 2021

References

  • Collell J, Galliero G, Vermorel R, et al. Transport of multicomponent hydrocarbon mixtures in shale organic matter by molecular simulations. J Phys Chem C. 2015;119(39):22587–22595.
  • Huang H, Meakin P, Liu M. Computer simulation of two-phase immiscible fluid motion in unsaturated complex fractures using a volume of fluid method. Water Resour Res. 2005;41(12).
  • Huang H, Meakin P, Liu M, et al. Modeling of multiphase fluid motion in fracture intersections and fracture networks. Geophys Res Lett. 2005;32(19).
  • Hoogerbrugge PJ, Koelman JMVA. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhys Lett). 1992;19(3):155.
  • Groot RD, Warren PB. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys. 1997;107(11):4423–4435.
  • Marsh C. Theoretical aspects of dissipative particle dynamics [dissertation]. University of Oxford; 1998.
  • Moeendarbary E, Ng TY, Zangeneh M. Dissipative particle dynamics: introduction, methodology and complex fluid applications – a review. Int J Appl Mech. 2009;1(4):737–763.
  • Liu MB, Liu GR, Zhou LW, et al. Dissipative particle dynamics (DPD): an overview and recent developments. Arch Comput Methods Eng. 2015;22(4):529–556.
  • Li Z, Bian X, Li X, et al. Dissipative particle dynamics: foundation, evolution, implementation, and applications. In: Particles in flows. Springer; 2017. p. 255–326.
  • Pan W. Single particle DPD: algorithms and applications [dissertation]. Brown University; 2010.
  • Pan W, Fedosov DA, Caswell B, et al. Predicting dynamics and rheology of blood flow: a comparative study of multiscale and low-dimensional models of red blood cells. Microvasc Res. 2011;82(2):163–170.
  • Tang Y, Karniadakis G. Accelerating dissipative particle dynamics simulations on GPUs: algorithms, numerics and applications. Comput Phys Commun. 2014;185(11):2809–2822.
  • Blumers AL, Tang YH, Li Z, et al. GPU-accelerated red blood cells simulations with transport dissipative particle dynamics. Comput Phys Commun. 2017;217:171–179.
  • Warren PB. Vapor-liquid coexistence in many-body dissipative particle dynamics. Phys Rev E. 2003;68(6):066702.
  • Tiwari A, Abraham J. Dissipative-particle-dynamics model for two-phase flows. Phys Rev E. 2006;74(5):056701.
  • Heldele R, Schulz M, Kauzlaric D, et al. Micro powder injection molding: process characterization and modeling. Microsyst Technol. 2006;12(10-11):941–946.
  • Visser DC, Hoefsloot HCJ, Iedema PD. Modelling multi-viscosity systems with dissipative particle dynamics. J Comput Phys. 2006;214(2):491–504.
  • Liu M, Meakin P, Huang H. Dissipative particle dynamics with attractive and repulsive particle-particle interactions. Phys Fluids. 2006;18(1):017101.
  • Liu M, Meakin P, Huang H. Dissipative particle dynamics simulation of fluid motion through an unsaturated fracture and fracture junction. J Comput Phys. 2007;222(1):110–130.
  • Liu M, Meakin P, Huang H. Dissipative particle dynamics simulation of pore-scale multiphase fluid flow. Water Resour Res. 2007;43:W04411.
  • Xia Y, Goral J, Huang H, et al. Many-body dissipative particle dynamics modeling of fluid flow in fine-grained nanoporous shales. Phys Fluids. 2017;29(5):056601.
  • Xia Y, Blumers A, Li Z, et al. A GPU-accelerated package for simulation of flow in nanoporous source rocks with many-body dissipative particle dynamics. Comput Phys Commun. 2020;247:106874.
  • Pagonabarraga I, Frenkel D. Dissipative particle dynamics for interacting systems. J Chem Phys. 2001;115(11):5015–5026.
  • Trofimov SY, Nies ELF, Michels MAJ. Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures. J Chem Phys. 2002;117(20):9383–9394.
  • Trofimov SY, Nies ELF, Michels MAJ. Constant-pressure simulations with dissipative particle dynamics. J Chem Phys. 2005;123(14):144102.
  • Vanya P, Crout P, Sharman J, et al. Liquid-phase parametrization and solidification in many-body dissipative particle dynamics. Phys Rev E. 2018;98(3):033310.
  • Ghoufi A, Malfreyt P. Mesoscale modeling of the water liquid-vapor interface: a surface tension calculation. Phys Rev E. 2011;83(5):051601.
  • Li Z, Hu GH, Wang ZL, et al. Three dimensional flow structures in a moving droplet on substrate: a dissipative particle dynamics study. Phys Fluids. 2013;25(7):072103.
  • Chen C, Zhuang L, Li X, et al. A many-body dissipative particle dynamics study of forced water–oil displacement in capillary. Langmuir. 2011;28(2):1330–1336.
  • Chen C, Lu K, Zhuang L, et al. Effective fluid front of the moving meniscus in capillary. Langmuir. 2013;29(10):3269–3273.
  • Chen C, Lu K, Li X, et al. A many-body dissipative particle dynamics study of fluid–fluid spontaneous capillary displacement. RSC Adv. 2014;4(13):6545–6555.
  • Espanol P. Dissipative particle dynamics with energy conservation. EPL (Europhys Lett). 1997;40(6):631.
  • Li Z, Tang YH, Lei H, et al. Energy-conserving dissipative particle dynamics with temperature-dependent properties. J Comput Phys. 2014;265:113–127.
  • Ripoll M, Espanol P, Ernst MH. Dissipative particle dynamics with energy conservation: heat conduction. Int J Mod Phys C. 1998;9(8):1329–1338.
  • Avalos JB, Mackie AD. Dynamic and transport properties of dissipative particle dynamics with energy conservation. J Chem Phys. 1999;111(11):5267–5276.
  • Zhang K, Li J, Shuo C, et al. Temperature-dependent properties of liquid-vapour coexistence system with many-body dissipative particle dynamics with energy conservation; 2020. arxiv:2007.09899.
  • Groot RD, Rabone KL. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J. 2001;81(2):725–736.
  • Khedr A, Striolo A. Dpd parameters estimation for simultaneously simulating water–oil interfaces and aqueous nonionic surfactants. J Chem Theory Comput. 2018;14(12):6460–6471.
  • Arienti M, Pan W, Li X, et al. Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions. J Chem Phys. 2011;134(20):204114.
  • Revenga M, Zuniga I, Espanol P. Boundary conditions in dissipative particle dynamics. Comput Phys Commun. 1999;121:309–311.
  • Goicochea AG, Altamirano MAB, Hernández JD, et al. The role of the dissipative and random forces in the calculation of the pressure of simple fluids with dissipative particle dynamics. Comput Phys Commun. 2015;188:76–81.
  • Angelikopoulos P, Papadimitriou C, Koumoutsakos P. Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework. J Chem Phys. 2012;137(14):144103.
  • Kulakova L, Arampatzis G, Angelikopoulos P, et al. Data driven inference for the repulsive exponent of the Lennard-Jones potential in molecular dynamics simulations. Sci Rep. 2017;7(1):1–10.
  • Zavadlav J, Arampatzis G, Koumoutsakos P. Bayesian selection for coarse-grained models of liquid water. Sci Rep. 2019;9(1):1–10.
  • Keaveny EE, Pivkin IV, Maxey M, et al. A comparative study between dissipative particle dynamics and molecular dynamics for simple-and complex-geometry flows. J Chem Phys. 2005;123(10):104107.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.
  • Pivkin IV, Karniadakis GE. Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems. J Chem Phys. 2006;124(18):184101.
  • Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes. J Phys Chem B. 1998;102(14):2569–2577.
  • Jorgensen WL, Madura JD, Swenson CJ. Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc. 1984;106(22):6638–6646.
  • Takaishi Y, Oguchi K. Measurements of the density for n-heptane for pressures up to 100 MPa by using a vibrating-wire densimeter. Rev High Pres Sci Technol. 1998;7:1192–1194.
  • Rolo LI, Caco AI, Queimada AJ, et al. Surface tension of heptane, decane, hexadecane, eicosane, and some of their binary mixtures. J Chem Eng Data. 2002;47(6):1442–1445.
  • Pensado AS, Comuñas MJP, Lugo L, et al. Experimental dynamic viscosities of 2, 3-dimethylpentane up to 60 MPa and from (303.15 to 353.15) k using a rolling-ball viscometer. J Chem Eng Data. 2005;50(3):849–855.
  • Moore JW, Wellek RM. Diffusion coefficients of n-heptane and n-decane in n-alkanes and n-alcohols at several temperatures. J Chem Eng Data. 1974;19(2):136–140.
  • Iwahashi M, Yamaguchi Y, Ogura Y, et al. Dynamical structures of normal alkanes, alcohols, and fatty acids in the liquid state as determined by viscosity, self-diffusion coefficient, infrared spectra, and 13cnmr spin-lattice relaxation time measurements. Bull Chem Soc Jpn. 1990;63(8):2154–2158.
  • Pan C, Hilpert M, Miller CT. Pore-scale modeling of saturated permeabilities in random sphere packings. Phys Rev E. 2001;64(6):066702.
  • Harvey AH. Thermodynamic properties of water: tabulation from the IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. US Department of Commerce, Technology Administration, National Institute of Standards and Technology; 1998.
  • Vargaftik NB, Volkov BN, Voljak LD. International tables of the surface tension of water. J Phys Chem Ref Data. 1983;12(3):817–820.
  • Harris KR, Woolf LA. Temperature and volume dependence of the viscosity of water and heavy water at low temperatures. J Chem Eng Data. 2004;49(4):1064–1069.
  • Gillen KT, Douglass DC, Hoch MJR. Self-diffusion in liquid water to −31∘ C. J Chem Phys. 1972;57(12):5117–5119.
  • Pivkin IV, Karniadakis GE. A new method to impose no-slip boundary conditions in dissipative particle dynamics. J Comput Phys. 2005;207(1):114–128.
  • Li Z, Bian X, Tang YH, et al. A dissipative particle dynamics method for arbitrarily complex geometries. J Comput Phys. 2018;355:534–547.
  • Zhang D, Shangguan Q, Wang Y. An easy-to-use boundary condition in dissipative particle dynamics system. Comput Fluids. 2018;166:117–122.
  • Xu S, Wang Q, Wang J. A new wall model for slip boundary conditions in dissipative particle dynamics. Int J Numer Methods Fluids. 2019;90(9):442–455.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.