254
Views
0
CrossRef citations to date
0
Altmetric
Articles

Exploring the structural transition mechanisms of a pair of poly(N-isopropylacrylamide) chains in aqueous solution through coarse-grained molecular simulations coupled with metadynamics

, , &
Pages 480-489 | Received 12 Nov 2020, Accepted 12 Jan 2021, Published online: 04 Feb 2021

References

  • Kirsebom H, Galaev IY, Mattiasson B. Stimuli-responsive polymers in the 21st century: elaborated architecture to achieve high sensitivity, fast response, and robust behavior. J Polymer Sci Part B: Polymer Phys. 2011;49(3):173–178.
  • Hoffman AS. Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev. 2013;65(1):10–16.
  • Liu F, Urban MW. Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci. 2010;35(1):3–23.
  • Kubota K, Fujishige S, Ando I. Solution properties of poly(n-isopropylacrylamide) in water. Polymer J. 1990;22(1):15–20.
  • Heskins M, Guillet JE. Solution properties of poly(n-isopropylacrylamide). J Macromolecular Sci: Part A – Chem. 1968;2(8):1441–1455.
  • Zhang XZ, Yang YY, Chung TS, et al. Preparation and characterization of fast response macroporous poly(n-isopropylacrylamide) hydrogels. Langmuir. 2001;17(20):6094–6099.
  • Wandera D, Wickramasinghe SR, Husson SM. Stimuli-responsive membranes. J Memb Sci. 2010;357(1):6–35.
  • Xie R, Chu LY, Deng JG. Membranes and membrane processes for chiral resolution. Chem Soc Rev. 2008;37(6):1243–1263.
  • Schmaljohann D. Thermo- and ph-responsive polymers in drug delivery. Adv Drug Deliv Rev. 2006;58(15):1655–1670.
  • Guan Y, Zhang Y. Pnipam microgels for biomedical applications: from dispersed particles to 3d assemblies. Soft Matter. 2011;7(14):6375–6384.
  • Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymers. 2011;3(3):1215–1242.
  • Halperin A, Krger M, Winnik FM. Poly(n-isopropylacrylamide) phase diagrams: fifty years of research. Angewandte Chemie Int Edition. 2015;54(51):15342–15367.
  • Sun S, Wu P. Role of water/methanol clustering dynamics on thermosensitivity of poly(n-isopropylacrylamide) from spectral and calorimetric insights. Macromolecules. 2010;43(22):9501–9510.
  • Gao Y, Yang J, Ding Y, et al. Effect of urea on phase transition of poly(n-isopropylacrylamide) investigated by differential scanning calorimetry. J Phys Chem B. 2014;118(31):9460–9466.
  • Wu J, Zhou B, Hu Z. Phase behavior of thermally responsive microgel colloids. Phys Rev Lett. 2003;90(4):048304.
  • Wu C, Zhou S. Laser light scattering study of the phase transition of poly(n-isopropylacrylamide) in water. 1. Single Chain. Macromolecules. 1995;28(24):8381–8387.
  • Maeda Y, Higuchi T, Ikeda I. Change in hydration state during the coil-globule transition of aqueous solutions of poly(n-isopropylacrylamide) as evidenced by ftir spectroscopy. Langmuir. 2000;16(19):7503–7509.
  • Chiessi E, Lonardi A, Paradossi G. Toward modeling thermoresponsive polymer networks: A molecular dynamics simulation study of n-isopropyl acrylamide co-oligomers. J Phys Chem B. 2010;114(25):8301–8312.
  • Wilson MR. Molecular simulation of liquid crystals: progress towards a better understanding of bulk structure and the prediction of material properties. Chem Soc Rev. 2007;36(12):1881–1888.
  • Walter J, Ermatchkov V, Vrabec J, et al. Molecular dynamics and experimental study of conformation change of poly(n-isopropylacrylamide) hydrogels in water. Fluid Phase Equilib. 2010;296(2):164–172.
  • Walter J, Sehrt J, Vrabec J, et al. Molecular dynamics and experimental study of conformation change of poly(n-isopropylacrylamide) hydrogels in mixtures of water and methanol. J Phys Chem B. 2012;116(17):5251–5259.
  • Galbraith ML, Madura JD. Identifying trends in hydration behavior for modifications to the hydrophobicity of poly(n-isopropylacrylamide). J Mol Graph Model. 2017;78:168–175.
  • Kang Y, Joo H, Kim JS. Collapseswelling transitions of a thermoresponsive, single poly(n-isopropylacrylamide) chain in water. J Phys Chem B. 2016;120(51):13184–13192.
  • Garca EJ, Bhandary D, Horsch MT, et al. A molecular dynamics simulation scenario for studying solvent-mediated interactions of polymers and application to thermoresponse of poly(n-isopropylacrylamide) in water. J Mol Liq. 2018;268(15):294–302.
  • Abbott LJ, Tucker AK, Stevens MJ. Single chain structure of a poly(n-isopropylacrylamide) surfactant in water. J Phys Chem B. 2015;119(9):3837–3845.
  • de Oliveira TE, Marques CM, Netz PA. Molecular dynamics study of the lcst transition in aqueous poly(n-n-propylacrylamide). Phys Chem Chem Phys. 2018;20(15):10100–10107.
  • Tavagnacco L, Zaccarelli E, Chiessi E. On the molecular origin of the cooperative coil-to-globule transition of poly(n-isopropylacrylamide) in water. Phys Chem Chem Phys. 2018;20(15):9997–10010.
  • de Oliveira TE, Mukherji D, Kremer K, et al. Effects of stereochemistry and copolymerization on the lcst of pnipam. J Chem Phys. 2017;146(3):034904.
  • Tucker AK, Stevens MJ. Study of the polymer length dependence of the single chain transition temperature in syndiotactic poly(n-isopropylacrylamide) oligomers in water. Macromolecules. 2012;45(16):6697–6703.
  • Du H, Wickramasinghe R, Qian X. Effects of salt on the lower critical solution temperature of poly (n-isopropylacrylamide). J Phys Chem B. 2010;114(49):16594–16604.
  • Rodrguez-Ropero F, van der Vegt NFA. On the urea induced hydrophobic collapse of a water soluble polymer. Phys Chem Chem Phys. 2015;17(13):8491–8498.
  • Micciulla S, Michalowsky J, Schroer MA, et al. Concentration dependent effects of urea binding to poly(n-isopropylacrylamide) brushes: a combined experimental and numerical study. Phys Chem Chem Phys. 2016;18(7):5324–5335.
  • Abbott LJ, Stevens MJ. A temperature-dependent coarse-grained model for the thermoresponsive polymer poly(n-isopropylacrylamide). J Chem Phys. 2015;143(24):244901.
  • Boan V, Ustach VD, Leonhard K, et al. Development and application of a coarse-grained model for pnipam by iterative boltzmann inversion and its combination with lattice boltzmann hydrodynamics. The J Phys Chem B. 2017;121(45):10394–10406.
  • Inglfsson HI, Lopez CA, Uusitalo JJ, et al. The power of coarse graining in biomolecular simulations. Wiley Interdisciplinary Rev: Comput Molecular Sci. 2014;4(3):225–248.
  • Saunders MG, Voth GA. Coarse-graining methods for computational biology. Annu Rev Biophys. 2013;42(1):73–93.
  • Luo C, Sommer JU. Coding coarse grained polymer model for lammps and its application to polymer crystallization. Comput Phys Commun. 2009;180(8):1382–1391.
  • Shinoda W, DeVane R, Klein ML. Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol Simul. 2007;33(1-2):27–36.
  • Prez-Ramrez HA, Odriozola G. A coil-to-globule transition capable coarse-grained model for poly(n-isopropylacrylamide). Phys Chem Chem Phys. 2020;22(32):17913–17921.
  • Wu J, Huang G, Hu Z. Interparticle potential and the phase behavior of temperature-sensitive microgel dispersions. Macromolecules. 2003;36(2):440–448.
  • Ahualli S, Martn-Molina A, Maroto-Centeno JA, et al. Interaction between ideal neutral nanogels: A monte carlo simulation study. Macromolecules. 2017;50(5):2229–2238.
  • Arndt MC, Sadowski G. Modeling poly(n-isopropylacrylamide) hydrogels in water/alcohol mixtures with pc-saft. Macromolecules. 2012;45(16):6686–6696.
  • Barducci A, Bonomi M, Prakash MK, et al. Free-energy landscape of protein oligomerization from atomistic simulations. Proc National Acad Sci. 2013;110(49):E4708–E4713.
  • Han M, Xu J, Ren Y. Compromise in competition between free energy and binding effect of intrinsically disordered protein p53 c-terminal domain. Mol Simul. 2017;43(2):110–120.
  • Han M, Xu J, Ren Y, et al. Simulations of flow induced structural transition of the β-switch region of glycoprotein ibα. Biophys Chem. 2016;209:9–20.
  • Han M, Xu J, Ren Y, et al. Simulation of coupled folding and binding of an intrinsically disordered protein in metadynamics. J Molecular Graphics and Modelling. 2016;68:114–127.
  • Laio A, Gervasio FL. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Reports on Progress in Phys. 2008;71(12):126601.
  • Barducci A, Bonomi M, Parrinello M. Metadynamics. Wiley Interdiscip Rev: Comput Mol Sci. 2011;1(5):826–843.
  • Humphrey W, Dalke A, Schulten K. Vmd: visual molecular dynamics. J Mol Graph. 1996;14(1):33–38.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.
  • Jewett AI, Zhuang Z, Shea JE. Moltemplate a coarse-grained model assembly tool. Biophys J. 2013;104(2, Supplement 1):169a.
  • Bitzek E, Koskinen P, Gähler F, et al. Structural relaxation made simple. Phys Rev Lett. 2006;97(17):170201.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695–1697.
  • Nos S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81(1):511–519.
  • Spreiter Q, Walter M. Classical molecular dynamics simulation with the velocity verlet algorithm at strong external magnetic fields. J Comput Phys. 1999;152(1):102–119.
  • Podewitz M, Wang Y, Quoika PK, et al. Coilglobule transition thermodynamics of poly(n-isopropylacrylamide). J Phys Chem B. 2019;123(41):8838–8847.
  • Fiorin G, Klein ML, Hnin J. Using collective variables to drive molecular dynamics simulations. Mol Phys. 2013;111(22-23):3345–3362.
  • Chen H, Fu H, Shao X, et al. Elf: an extended-lagrangian free energy calculation module for multiple molecular dynamics engines. J Chem Inf Model. 2018;58(7):1315–1318.
  • Paradossi G, Chiessi E. Solution behaviour of poly(n-isopropylacrylamide) stereoisomers in water: a molecular dynamics simulation study. Phys Chem Chem Phys. 2017;19(19):11892–11903.
  • Li J, Huang W, Chen J, et al. Mesoscience based on the emms principle of compromise in competition. Chemical Eng J. 2018;333(1):327–335.
  • Li J, Huang W. From multiscale to mesoscience: addressing mesoscales in mesoregimes of different levels. Annu Rev Chem Biomol Eng. 2018;9(1):41–60.
  • Huang W, Li J, Edwards PP. Mesoscience: exploring the common principle at mesoscales. Natl Sci Rev. 2017;5(3):321–326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.