671
Views
1
CrossRef citations to date
0
Altmetric
Articles

The structure of dichlorotris(triphenylphosphine)ruthenium(II): a DFT study of interaction energies and substitution mechanism

, , ORCID Icon, ORCID Icon, , & show all
Pages 628-635 | Received 12 Nov 2020, Accepted 19 Feb 2021, Published online: 09 Mar 2021

References

  • Bielawski CW, Grubbs RH. Living ring-opening metathesis polymerization. Prog Polym Sci. 2007;32:1–29.
  • Carvalho VP, Ferraz CP, Lima-Neto BS. Electronic synergism in [RuCl2(PPh3)2(amine)] Complexes differing the reactivity for ROMP of norbornene and norbornadiene. J Mol Catal A: Chem. 2010;333(1–2):46–53.
  • Drozdzak R, Allaert B, Ledoux N, et al. Ruthenium complexes bearing Bidentate Schiff base ligands as efficient catalysts for organic and polymer syntheses. Coord Chem Rev. 2005;249(24):3055–3074.
  • Buchmeiser MR. Polymer-supported well-defined metathesis catalysts. Chem Rev. 2009;109(2):303–321.
  • Fernandes RJ, Silva TB, Lima-Neto BS, et al. Structural and kinetic insights into the mechanism for ring opening metathesis polymerization of norbornene with [RuCl2(PPh3)2(piperidine)] as initiator complex. J Mol Catal A Chem. 2015;410:58–65.
  • Vaska L. Interaction of osmium and ruthenium halides with triphenylphosphine, -arsine and -stibine in alcohols. Chem Ind (London). 1961;35:1402–1403.
  • Stephenson TA, Wilkinson G. New complexes of ruthenium (II) and (III) with triphenylphosphine, triphenylarsine, trichlorostannate, pyridine and other ligands. J Inorg Nucl Chem. 1966;28:945–956.
  • La Placa SJ, Ibers JA. A five-coordinated d6 complex: structure of dichlorotris(triphenylphosphine)ruthenium (II). Inorg Chem. 1965;4:778–783.
  • Ernst RD, Basta R, Arif AM. Crystal structure of a pleochroic modification of dichlorotris(triphenylphospine) ruthenium, C54H45CI2P3RU, at 200 Κ. Z Krist-New Cryst St. 2003;218:49–51.
  • Cowley AR, Dilworth JR, Von Maresca Beckh W CA. Dichlorotris(triphenylphosphine)ruthenium(II) dichloromethane hemisolvate. Acta Crystallogr Sect E Struct Reports Online. 2005;61:m1237–m1239.
  • Clapham SE, Hadzovic A, Morris RH. Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord Chem Rev. 2004;248:2201–2237.
  • Chaves HK, Ferraz CP, Carvalho VP, et al. Tuning the activity of alternative Ru-based initiators for ring-opening metathesis polymerization of norbornene and norbornadiene by the substituent in 4-CH2R-piperidine. J Mol Catal A-Chem. 2014;385:46–53.
  • Grubbs RH. Olefin metathesis. Tetrahedron. 2004;60:7117–7140.
  • Hoffman PR, Caulton KG. Solution structure and dynamics of five-coordinate d6 complexes. J Am Chem Soc. 1975;97:4221–4228.
  • Kulkarni AD, Truhlar DG. Performance of density functional theory and Moller-Plesset second-order perturbation theory for structural parameters in complexes of Ru. J Chem Theory Comput. 2011;7:2325–2332.
  • Chai J, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom – atom dispersion corrections. Phys Chem Chem Phys. 2008;10:6615–6620.
  • Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B. 1986;33:8822–8824.
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–5652.
  • Zhao Y, Truhlar DG. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys. 2006;125:194101-1–194101-18.
  • Peverati R, Truhlar DG. An improved and broadly accurate local approximation to the exchange–correlation density functional: The MN12-L functional for electronic structure calculations in chemistry and physics. Phys Chem Chem Phys. 2012;14:13171–13174.
  • Perdew JP, Ernzerhof M, Burke K. Rationale for mixing exact exchange with density functional approximations. J Chem Phys. 1996;105:9982–9985.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868.
  • Yanai T, Tew DP, Handy NC. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 2004;393:51–57.
  • Stephens PJ, Devlin FJ, Chabalowski CF, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem. 1994;98:11623–11627.
  • DiLabio GA, Koleini M, Torres E. Extension of the B3LYP–dispersion-correcting potential approach to the accurate treatment of both inter- and intra-molecular interactions. Theor Chem Acc. 2013;132:1389.
  • Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys. 2005;7:3297–3305.
  • Madeira PJA, Morais TS, Silva TJL, et al. Gas-phase behaviour of Ru(II) cyclopentadienyl-derived complexes with N-coordinated ligands by electrospray ionization mass spectrometry: fragmentation pathways and energetics. Rapid Commun Mass Spectrom. 2012;26:1675–1686.
  • Ziegler T, Rauk A. On the calculation of bonding energies by the hartree fock slater method. Theor Chim Acta. 1977;46:1–10.
  • Dapprich S, Frenking G. Investigation of donor-acceptor interactions: a charge decomposition analysis using fragment molecular orbitals. J Chem Phys. 1995;99:9352–9362.
  • Matos JME, Lima-Neto BS. Piperidine as ancillary ligand in the novel [RuCl2(PPh3)2(piperidine)] complex for metathesis polymerization of norbornene and norbornadiene. J Mol Catal A: Chem. 2004;222:81–85.
  • Fonseca LR, Nascimento ESP, Silva JL, et al. The ring size of cyclic amines as a relevant feature in the activity of Ru-based complexes for ROMP. New J Chem. 2015;39:4063–4069.
  • McQuarie DA, Simon JD. Physical chemistry: a molecular approach. Sausalito (CA): University Science Book; 1997.
  • Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, et al. Gaussian, Inc., Wallingford, CT, 2013.
  • Gorelsky SI. AOMix: program for molecular orbital analysis; version 6.88, University of Ottawa, 2013, http://www.sg-chem.net.
  • Gorelsky SI, Lever ABP. Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. J Organomet Chem. 2001;635:187–196.
  • Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev. 1988;88:899–926.
  • Bader RFW. Atoms in molecules: a quantum theory. 2nd ed. Oxford: Oxford University Press; 1994.
  • Keith TA. AIMAll (Version 13.05.06), TK Gristmill Software: Overland Park, KS, 2013 (aim.tkgristmill.com).
  • Minenkov Y, Singstad Å, Occhipinti G, et al. The accuracy of DFT-optimized geometries of functional transition metal compounds: a validation study of catalysts for olefin metathesis and other 3reactions in the homogeneous phase. Dalton Trans. 2012;41:5526.
  • Sabo-Etienne S, Grellier M. Ruthenium: inorganic & coordination chemistry. In: Scott RA, editor. Encyclopedia of inorganic chemistry. Chichester: John Wiley & Sons, Ltd; 2006. p. 1–22.
  • Rossi AR, Hoffmann R. Transition metal pentacoordination. Inorg Chem. 1975;14:365–374.
  • The NBO approach does not indicate any back-donation from any of the lone pairs on ruthenium to any of the (P-C)* (antibonding) bond of the PPh3 groups.
  • Frenking G, Fröhlich N. The nature of the bonding in transition-metal compounds. Chem Rev. 2000;100:717–774.
  • Lein M. Characterization of agostic interactions in theory and computation. Coord Chem Rev. 2009;253:625–634.
  • Brookhart M, Green MLH, Parkin G. Agostic interactions in transition metal compounds. P Natl Acad Sci USA. 2007;104:6908–6914.
  • Tognetti V, Joubert L, Raucoules R, et al. Characterizing agosticity using the quantum theory of atoms in molecules: bond critical points and their local properties. J Phys Chem A. 2012;116:5472–5479.
  • Silva Sá JL, Nascimento ESP, Fonseca LR, et al. Ring opening metathesis copolymerization of norbornene with norbornadiene from solutions with different mole fractions of the comonomers catalyzed by Ru-amine complexes. J Appl Polym Sci. 2013;127:3578–3585.
  • Armit PW, Boyd ASF, Stephenson TA. Synthesis and rearrangement reactions of dihalogenotris- and dihalogenotetrakis- (tertiary phosphine)ruthenium(II) compounds. J Chem Soc Dalton Trans. 1975:1663–1672.
  • Viana RB, De Souza AR, Lima-Neto BS, et al. On the stability of the RuCl2(triphenylphosphine)2(amine) complexes: ligand substituent effects of cyclic and acyclic amines. Polyhedron. 2014;81:661–667.
  • Hunter EP, Lias SG. Evaluated gas phase basicities and proton affinities of molecules: an update. J Phys Chem Ref Data. 1998;27:413–656.
  • Rilak A, Puchta R, Bugarcic ZD. Mechanism of the reactions of ruthenium(II) polypyridyl complexes with thiourea, sulfur-containing amino acids and nitrogen-containing heterocycles. Polyhedron. 2015;91:73–83.
  • Rilak A, Petrovic B, Grguric-Sipka S, et al. Kinetics and mechanism of the reactions of Ru(II)–arene complex with some biologically relevant ligands. Polyhedron. 2011;30:2339–2344.
  • Silva Sá JL, Lima-Neto BS. Ability of Ru complexes for ROMP tuned through a combination of phosphines and amines. J Mol Catal A Chem. 2009;304:187–190.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.