178
Views
0
CrossRef citations to date
0
Altmetric
Articles

Deep neural network for fitting analytical potential energy curve of diatomic molecules from ro-vibrational spectra

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 650-658 | Received 13 Oct 2020, Accepted 16 Feb 2021, Published online: 18 Mar 2021

References

  • Herzberg G. Molecular spectra and molecular structure: spectra of diatomic molecules. New York: Van Nostrand; 1950.
  • Dunham JL. The energy levels of a rotating vibrator. Phys Rev. 1932;41:721–731.
  • Kirschner SM, Watson JK. RKR potentials and semiclassical centrifugal constants of diatomic molecules. J Mol Spectrosc. 1973;47(2):234–242.
  • Le Roy RJ. RKR1: A computer program implementing the first-order RKR method for determining diatomic molecule potential energy functions. J Quant Spectrosc Radiat Transf. 2017;186:158–166.
  • Hurley A. Equivalence of Rydberg-Klein-Rees and simplified dunham potentials. J Chem Phys. 1962;36(4):1117–1118.
  • Rydberg R. Graphische darstellung einiger bandenspektroskopischer ergebnisse. Z Phys. 1932;73(5-6):376–385.
  • Klein O. Zur berechnung von potentialkurven für zweiatomige moleküle mit hilfe von spektraltermen. Z Phys. 1932;76(3-4):226–235.
  • Pashov A, Jackowska I, Jastrzebski W, et al. Polarization labeling spectroscopy of the 31Π and 61Σ+ states in NaK. Phys Rev A. 1998;58:1048–1054.
  • Kosman WM, Hinze J. Inverse perturbation analysis: improving the accuracy of potential energy curves. J Mol Spectrosc. 1975;56:93–103.
  • Pashov A, Jastrzȩbski W, Kowalczyk P. Construction of potential curves for diatomic molecular states by the IPA method. Comput Phys Commun. 2000;128:622–634.
  • Melville TC, Coxon JA. The application of direct potential fitting to the X1Σ+ ground electronic states of LiCl, TlCl, RbF and CsF. Spectrochim Acta A Mol Biomolecular Spectrosc. 2001;57(6):1171–1176.
  • Le Roy RJ. dPotFit: A computer program to fit diatomic molecule spectral data to potential energy functions. J Quant Spectrosc Radiat Transf. 2017;186:179–196.
  • Marques J, Prudente F, Pereira F, et al. A new genetic algorithm to be used in the direct fit of potential energy curves to ab initio and spectroscopic data. J Phys B Atom Molec Phys. 2008;41:085103.
  • Almeida MM, Prudente FV, Fellows CE, et al. Direct fit of spectroscopic data of diatomic molecules by using genetic algorithms: II. the ground state of RbCs. J Phys B. 2011;44:225102.
  • Roncaratti L, Gargano R, Silva G. A genetic algorithm to build diatomic potentials. J Mol Struct (Theochem). 2006;769:47–51.
  • Bittencourt ACP, Prudente FV, Vianna JDM. The fitting of potential energy and transition moment functions using neural networks: transition probabilities in OH (A2Σ+→X2Π). Chem Phys. 2004;297(1):153–161.
  • Urbańczyk T, Koperski J. Neural networks and determination of diatomic molecule interatomic potential of cadmium dimer. Spectrochim Acta A. 2018;189:502–509.
  • Barber B, Zhang K, Guo B, et al. Vibration-Rotation emission spectrum of MgF. J Mol Spectrosc. 1995;169(2):583–589.
  • Abiodun OI, Jantan A, Omolara AE, et al. State-of-the-art in artificial neural network applications: A survey. Heliyon. 2018;4(11):e00938.
  • Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems – Volume 1; NIPS'12. Red Hook (NY): Curran; 2012. p. 1097–1105
  • Deng L, Hinton G, Kingsbury B. New types of deep neural network learning for speech recognition and related applications: an overview. In: 2013 IEEE Int Conf Acoust Speech Signal Process; 2013. p. 8599–8603.
  • Gawehn E, Hiss JA, Brown JB, et al. Advancing drug discovery via GPU-based deep learning. Expert Opin Drug Discov. 2018;13(7):579–582.
  • Yu P, Yan X. Stock price prediction based on deep neural networks. Neural Comput Appl. 2020;32(6):1609–1628.
  • Moreira J, de Carvalho A, Horvath T. A general introduction to data analytics. Hoboken, NJ: Wiley–Interscience; 2018.
  • Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signals Syst. 1989;2:303–314.
  • Maas AL, Hannun AY, Ng AY, Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop Deep Learn Audio Speech Lang Process. 2013;30.
  • LeCun Y, Bengio Y, Hinton G. Deep learn. Nature. 2015;521:436–444.
  • Ramachandran P, Zoph B, Le QV. Searching for activation functions. abs/1710.05941. CoRR; 2017.
  • Hahnloser R, Sarpeshkar R, Mahowald M, et al. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature. 2000;405:947–951.
  • Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In: Gordon G, Dunson D, Dudík M, editors. Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics; Proceedings of Machine Learning Research; Vol. 15. PMLR; 2011. p. 315–323.
  • Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge, MA: MIT Press; 2016.
  • Svozil D, Kvasnicka V, Pospichal J. Introduction to multi-layer feed-forward neural networks. Chemom Intell Lab Syst. 1997;39(1):43–62.
  • Mittal S, Vaishay S. A survey of techniques for optimizing deep learning on GPUs. J Syst Architect. 2019;99:101635.
  • Hou S, Bernath PF. Line list for the mgF ground state. J Quant Spectrosc Radiat Transf. 2017;203:511–516.
  • Seto JY, Morbi Z, Charron F, et al. Vibration-rotation emission spectra and combined isotopomer analyses for the coinage metal hydrides: CuH & CuD, AgH & AgD, and AuH & AuD. J Chem Phys. 1999;110(24):11756–11767.
  • Le Roy RJ. LEVEL: A computer program for solving the radial Schrödinger equation for bound and quasibound levels. J Quant Spectrosc Radiat Transf. 2017;186:167–178.
  • Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. abs/1502.03167. CoRR; 2015.
  • Douglas SC, Yu J. Why RELU units sometimes die: analysis of single-unit error backpropagation in neural networks. In: 2018 52nd Asilomar Conf Signals Syst Comput; 2018. p. 864–868.
  • Lu L, Shin Y, Su Y, et al. Dying ReLU and initialization: theory and numerical examples. abs/1903.06733. CoRR; 2019.
  • Chollet F. keras; 2015. Available from: https://github.com/fchollet/keras
  • Bottou L. On-line Learning and Stochastic Approximations. In: Saad D., editor. On-Line Learning in Neural Networks (Publications of the Newton Institute). Cambridge: Cambridge University Press; 1999. p. 9–42. DOI:10.1017/CBO9780511569920.003.
  • Kingma DP, Ba J. Adam: a method for stochastic optimization. abs/412.6980. International Conference on Learning Representations; 2015.
  • Prechelt L. Automatic early stopping using cross validation: quantifying the criteria. Neural Netw. 1998;11(4):761–767.
  • He K, Zhang X, Ren S, et al. Delving deep into rectifiers: surpassing human-level performance on imageNet classification. In: IEEE Int Conf Comput Vis (ICCV 2015); 2015. p. 1502.
  • Cunha W, Oliveira R, Roncaratti L, et al. Rovibrational energies and spectroscopic constants for H2O–Ng complexes. J Mol Model. 2014 12;20:2498.
  • Radzig AA, Smirnov BM. Reference data on atoms, molecules, and ions. Berlin, Heidelberg: Springer-Verlag; 1980.
  • Czuchaj E, Krośnicki M. CCSD(T) calculation of the ground-state potential curves for the Cd-rare gas Van Der Waals molecules. Chem Phys Lett. 2000;329(5):495–502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.