277
Views
3
CrossRef citations to date
0
Altmetric
Articles

Molecular simulation of water adsorption on hydrophilic and hydrophobic surfaces of silicon: IR-spectral explorations

ORCID Icon, ORCID Icon & ORCID Icon
Pages 666-673 | Received 13 Jun 2020, Accepted 22 Feb 2021, Published online: 24 Mar 2021

References

  • Nayak JP, Bera J. Bioactivity characterization of amorphous silica ceramics derived from rice husk ash. Silicon. 2012;4:57–60.
  • Shabir Q, Webb K, Nadarassan DK, et al. Quantification and reduction of the residual chemical reactivity of passivated biodegradable Porous silicon for drug delivery applications. Silicon. 2017:1–11. doi:10.1007/s12633-016-9454-4
  • Stallard CP, McDonnell KA, Onayemi OD, et al. Evaluation of protein adsorption on atmospheric plasma deposited coatings exhibiting superhydrophilic to superhydrophobic properties. Biointerphases. 2012;7:31(12).
  • Santos HA. Porous silicon for biomedical applications. Oxford: Elsevier; 2014.
  • Saddow SE. Silicon carbide biotechnology: a biocompatible semiconductor for advanced biomedical devices and applications. Oxford: Elsevier; 2012.
  • Bag MA, Valenzuela LM. Impact of the hydration states of polymers on their hemocompatibility for medical applications: a review. Int J Mol Sci. 2017;18(8). doi:10.3390/ijms18081422
  • Morais JM, Papadimitrakopoulos F, Burgess DJ. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 2010;12(2):188–196. doi:10.1208/s12248-010-9175-3
  • Vogler EA. Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci. 1998;74(1):69–117. doi:10.1016/S0001-8686(97)00040-7
  • Pruppacher HR, Klett JD. Microphysics If clouds and precipitation. Heidelberg: Kluwer Academic Publishers; 1997.
  • Stumm W, Sigg L, Sulzberger B. Chemistry of the solid-water interface at the mineral-water and particle-water interface in natural systems. New York: Wiley; 1992.
  • Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature. 2005;437(7059):640–647. doi:10.1038/nature04162
  • Strempel VE, Naumann D’Alnoncourt R, Driess M, et al. Atomic layer deposition on Porous powders with in situ gravimetric monitoring in a modular fixed Bed reactor setup. Rev Sci Instrum. 2017;88(7):074102), doi:10.1063/1.4992023
  • Wang XD, Kim SH, Chen C, et al. A simple method to control nanotribology behaviors of monocrystalline silicon. J Appl Phys. 2016;119(4):044304. doi:10.1063/1.4940882
  • Chen L, Yang YJ, He HT, et al. Effect of coadsorption of water and alcohol vapor on the nanowear of silicon. Wear. 2015;332–333:879–884. doi:10.1016/j.wear.2015.02.052
  • de Groot BL, Grubmüller H. The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr Opin Struct Biol. 2005;15:176–183.
  • Margel S, Vogler EA, Firment L, et al. Peptide, protein, and cellular interactions with self-assembled monolayer model surfaces. J Biomed Mater Res. 1993;27(12):1463–1476. doi:10.1002/jbm.820271202
  • de Gennes PG. Wetting: statics and dynamics. Rev Mod Phys. 1985;57:827–863.
  • Spencer EC, Levchenko AA, Ross NL, et al. Inelastic neutron scattering study of confined surface water on rutile nanoparticles. J Phys Chem A. 2009;113(12):2796–2800. doi:10.1021/jp8109918
  • Levchenko AA, Kolesnikov AI, Ross NL, et al. Dynamics of water confined on a TiO2 (anatase) surface. J Phys Chem A. 2007;111(49):12584–12588. doi:10.1021/jp076033j
  • Mamontov E, Vlcek L, Wesolowski DJ, et al. Dynamics and structure of hydration water on rutile and cassiterite nanopowders studied by quasielastic neutron scattering and molecular dynamics simulations. J Phys Chem C. 2007;111:4328–4341.
  • Mamontov E, Wesolowski DJ, Vlcek L, et al. Dynamics of hydration water on rutile studied by backscattering neutron spectroscopy and molecular dynamics simulation. J Phys Chem C. 2008;112:12334–12341.
  • Mamontov E, Vlcek L, Wesolowski DJ, et al. Suppression of the dynamic transition in surface water at low hydration levels: a study of water on rutile. Phys Rev E - Stat Nonlinear, Soft Matter Phys. 2009;79(5):051504(6). doi:10.1103/PhysRevE.79.051504
  • Kavethekar RS, English NJ, MacElroy JMD. Study of translational, librational and intra-molecular motion of adsorbed liquid water monolayers at various TiO2 interfaces. Mol Phys. 2011;109:2645–2654.
  • Leach AR. Molecular modelling. 2nd ed. Harlow: Pearson; 2001.
  • Asay DB, Kim SH. Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J Phys Chem B. 2005;109(35):16760–16763. doi:10.1021/jp053042o
  • Chen L, He X, Liu H, et al. Water adsorption on hydrophilic and hydrophobic surfaces of silicon. J Phys Chem C. 2018;122(21):11385–11391. doi:10.1021/acs.jpcc.8b01821
  • Yang J, Meng S, Xu LF, et al. Ice tessellation on a hydroxylated silica surface. Phys Rev Lett. 2004;92(14):146102), doi:10.1103/physrevlett.92.146102
  • Argyris D, Cole DR, Striolo A. Hydration structure on crystalline silica substrates. Langmuir. 2009;25(14):8025–8035. doi:10.1021/la9005136
  • Argyris D, Cole DR, Striolo A. Dynamic behavior of interfacial water at the silica surface. J Phys Chem C. 2009;113:19591–19600.
  • Odelius M, Bernasconi M, Parrinello M. Two dimensional ice adsorbed on mica surface. Phys Rev Lett. 1997;78(14):2855–2858. doi:10.1103/PhysRevLett.78.2855
  • Martinez-Gonzalez JA, English NJ, Gowen AA. Understanding the interface between silicon-based materials and water: molecular-dynamics exploration of infrared spectra. AIP Adv. 2017;7(11):115105. doi:10.1063/1.4999086
  • Wu Y, Tepper HL, Voth GA. Flexible simple point-charge water model with improved liquid-state properties. J. Chem Phys. 2006;124:24503–24512.
  • Tersoff J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B. 1989;39:5566–5568.
  • Allen MP, Tildesley DJ. Computer simulation of liquids: second edition; 2017. doi:10.1093/oso/9780198803195.001.0001
  • Pham AT, Barisik M, Kim B. Molecular dynamics simulations of Kapitza length for argon-silicon and water-silicon interfaces. Int J Prec Eng Manuf. 2014;15:323–329.
  • English NJ, Macelroy JMD. Atomistic simulations of liquid water using Lekner electrostatics. Mol Phys. 2002;100:3753–3769.
  • Smith W, Forester TR, Todorov IT. The DL_POLY_2 User Manual, v. 2.19.; 2008.
  • Tse JS, Klein ML, McDonald IR. Molecular dynamics studies of ice IC and the structure I clathrate hydrate of methane. J Phys Chem. 1983;87:4198–4203.
  • Boulard B, Kieffer J, Phifer CC, et al. Vibrational spectra in fluoride crystals and glasses at normal and high pressures by computer simulation. J Non-Cryst Solids. 1992;140:350–358.
  • Praprotnik M, Janežič D. Molecular dynamics integration and molecular vibrational theory. III. The infrared spectrum of water. J Chem Phys. 2005;122:174103(10).
  • Irvine WM, Pollack JB. Infrared optical properties of water and Ice spheres. Icarus. 1968;8:324–360.
  • Ramos-Alvarado B, Kumar S, Peterson GP. Wettability of graphitic-carbon and silicon surfaces: MD modeling and theoretical analysis. J Chem Phys. 2015;143:044703.
  • Paniagua-Guerra LE, Gonzalez-Valle CU, Ramos-Alvarado B. Heat transfer across crystalline and amorphous silicon surfaces in contact with water and the effects of the interfacial liquid structuring. ASME 2019, 8B: Heat T, V08BT10A046. doi:10.1115/imece2018-86497
  • Gonzalez-Valle CU, Ramos-Alvarado B. Interfacial liquid structuring at SiC-water interfaces and its effects on heat transfer. 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm); 2018. p. 86–91. doi:10.1109/ITHERM.2018.8419565
  • Gonzalez-Valle CU, Kumar S, Ramos-Alvarado B. Thermal transport across SiC-water interfaces. ACS Appl Mater Interfaces. 2018;10(34):29179–29186. doi:10.1021/acsami.8b10307
  • Solomentsev GY, English NJ, Mooney DA. Hydrogen bond perturbation in hen egg white lysozyme by external electromagnetic fields: a nonequilibrium molecular dynamics study. J Chem Phys. 2010;133(23):235102. doi:10.1063/1.3518975
  • Munetoh S, Motooka T, Moriguchi K, et al. Interatomic potential for Si–O systems using tersoff parameterization. Comput Mater Sci. 2007;39:334–339.
  • de Brito Mota F, Justo JF, Fazzio A. Hydrogen role on the properties of amorphous silicon nitride. J Appl Phys. 1999;86:1843–1847.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.