5,993
Views
17
CrossRef citations to date
0
Altmetric
Articles

Machine learning and descriptor selection for the computational discovery of metal-organic frameworks

ORCID Icon & ORCID Icon
Pages 857-877 | Received 30 Dec 2020, Accepted 05 Apr 2021, Published online: 29 Apr 2021

References

  • Kondo M, Yoshitomi T, Matsuzaka H, et al. Three-dimensional framework with channeling cavities for small molecules: {[M 3(4, 4-bpy) 3(NO 3) 4]·xH 2O} n (M = Co, Ni, Zn). Angew Chem Int Ed Engl. 1997;36:1725–1727.
  • Henrietta WL, Jianwei R, Brian N, et al. Hydrogen storage in metal-organic frameworks: a review. Electrochim Acta. 2014;128:368–392.
  • Boyd PG, Chidambaram A, García-Díez E, et al. Data-driven design of metal-organic frameworks for wet flue gas CO 2 capture, Nature. 2019;576:253–256.
  • Hu Z, Wang Y, Shah BB, et al. CO 2 capture in metal-organic framework adsorbents: an engineering perspective. Adv Sustainable Syst. 2019;3:1800080.
  • Pascanu V, González Miera G, Inge AK, et al. Metal-organic frameworks as catalysts for organic synthesis: a critical perspective. J Am Chem Soc. 2019;141(18):7223–7234.
  • Lin R-B, Xiang S, Xing H. Exploration of porous metal-organic frameworks for gas separation and purification, Coord Chem Rev. 2019;378:87–103.
  • Kreno LE, Leong K, Farha OK, et al. Metal-organic framework materials as chemical sensors. Chem Rev. 2012;112(2):1105–1125.
  • Bhardwaj SK, Bhardwaj N, Kaur R, et al. An overview of different strategies to introduce conductivity in metal-organic frameworks and miscellaneous applications thereof. J Mater Chem A. 2018;6:14992–15009.
  • Sundriyal S, Kaur H, Bhardwaj SK, et al. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coord Chem Rev. 2018;369:00.
  • Xing X-S, Fu Z-H, Zhang N-N, et al. High proton conduction in an excellent water-stable gadolinium metal-organic framework. Chem Commun. 2019;55:1241–1244.
  • Ramaswamy P, Wonga NE, Shimizu GKH. MOFs as proton conductors-challenges and opportunities. Chem Soc Rev. 2014;43:5913–5932.
  • So MC, Wiederrecht GP, Mondloch JE, et al. Metal-organic framework materials for light-harvesting and energy transfer. Chem Commun. 2015;51:3501–3510.
  • Wang L, Zheng M, Xie Z. Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise. J Mater Chem B. 2018;6:707–717.
  • Gandara-Loe J, Ortuño-Lizarán I, Fernández-Sanchez L, et al. Metal-Organic frameworks as drug delivery platforms for ocular therapeutics. ACS Appl Mater Interfaces. 2019;11(2):1924–1931.
  • Omar KF, Ibrahim E, Nak Cheon J, et al. Metal-Organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc. 2012;134(36):15016–15021.
  • Furukawa H, Ko N, Go YB, et al. Ultrahigh porosity in metal-organic frameworksScience. 2010;329:424–428.
  • Farha OK, Yazaydın AO, Eryazici I, et al. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacitiesNat Chem. 2010;2:944–948.
  • Koh K, Wong-Foy AG, Matzger AJ. A porous coordination copolymer with over 5000 m 2/g BET surface areaJ Am Chem Soc. 2009;131:4184–4185.
  • Yan Y, Telepeni I, Yang S, et al. Metal-Organic polyhedral frameworks: high H 2 adsorption capacities and neutron powder diffraction studiesAm Chem Soc. 2010;132:4092–4094.
  • Klein N, Senkovska I, Baburin IA, et al. Route to a family of robust, non-interpenetrated metal-organic frameworks with pto-like topologyChem Eur J. 2011;17:13007.13016
  • Furukawa H, Miller MA, Yaghi OM. Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworksJ Mater Chem. 2007;17:3197.
  • An J, Farha OK, Hupp JT, et al. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic frameworkNat Commun. 2012;3:604.
  • Ferey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface areaScience. 2005;309:2040.2042
  • Koh K, Wong-Foy AG, Matzger A. A porous coordination copolymer with over 5000 m 2/g BET surface area. J Angew Chem Int Ed. 2008;47:677.
  • Sumida K, Hill MR, Horike S, et al. Synthesis and hydrogen storage properties of Be12 (OH) 12 (1, 3, 5-benzenetribenzoate) 4. J Am Chem Soc. 2009;131:15120.
  • Zhao D, Yuan D, Sun D, et al. Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. J Am Chem Soc. 2009;131:9186.
  • Li WJ, Lu J, Gao SY, et al. Electrochemical preparation of metal-organic framework films for fast detection of nitro explosives. J Mater Chem A. 2014;2:19473.
  • Korean J. Synthesis of metal-organic frameworks: a mini review. Chem Eng. 2013;30(9):1667–1680.
  • Zou F, Yu R, Li R, et al. Microwave-assisted synthesis of HKUST-1 and functionalized HKUST-1-@H3PW12O40: selective adsorption of heavy metal ions in water analyzed with synchrotron radiation. Chemphyschem. 2013 Aug 26;14(12):2825–2832. DOI: 10.1002/cphc.201300215
  • Dey C, Kundu T, Biswal BP, et al. Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2014 Feb;70(Pt 1):3–10. DOI: 10.1107/S2052520613029557. Epub 2013 Dec 10. PMID: 24441122.
  • Notman N. MOFs find a use. Chemistry World 2017 [cited 2019 Apr 1]. Available from: https://www.chemistryworld.com/features/mofs-find-a-use/2500508.article
  • Anderson R, Gómez-Gualdrón DA. Large-scale free energy calculations on a computational metal-Organic frameworks database: toward synthetic likelihood predictions. Chem Mater. 2020;32(19):8106–8119.
  • Arni S, Melanie T, Huynh A, et al. The role of molecular modelling and simulation in the discovery and deployment of metal-organic frameworks for gas storage and separation. Mol Simul. 2019;45(14–15):1082–1121.
  • Michie D. “Memo” functions and machine learning (reprinted from nature, vol. 218, no. 5136, pp. 19–22, april 6, 1968). Available from: https://stacks.stanford.edu/file/druid:jt687kv7146/jt687kv7146.pdf
  • Svetnik V, Liaw A, Tong C, et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003 Nov–Dec;43(6):1947–1958.
  • Whitley D. A genetic algorithm tutorial. Stat Comput. 1994;4:65–85.
  • Tim H, Leorey M, Marcus O, et al. Artificial neural network models for forecasting and decision making. Int J Forecast. 1994;10(1):5–15.
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436.
  • Goh GB, Hodas NO, Vishnu A. Deep learning for computational chemistry. J Comput Chem. 2017;38:1291–1307.
  • Gen M, Lin L. Genetic algorithms. In: Wah BW, editor. Wiley encyclopedia of computer science and engineering. New York (NY): Wiley-Interscience; 2007. p. 1–15. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470050118.ecse169.
  • Whitley D. A genetic algorithm tutorial. Stat Comput. 1994;4:65–85.
  • Yao Z, Sanchez-Lengeling B, Bobbitt NS, et al. Inverse design of nanoporous crystalline reticular materials with deep generative models. ChemRxiv. 2020. Available from: https://doi.org/10.26434/chemrxiv.12186681.v1
  • Moghadam PZ, Li A, Wiggin SB, et al. Development of a cambridge structural database subset: a collection of metal-organic frameworks for past, present, and future. Chem Mater. 2017;29(7):2618–2625.
  • Chung YG, Haldoupis E, Bucior BJ, et al. Advances, updates, and analytics for the computation-ready, experimental metal-organic framework database: CoRE MOF 2019. J Chem Eng Data. 2019;64(12):5985–5998.
  • Wilmer CE, Leaf M, Lee CY, et al. Large-scale screening of hypothetical metal-organic frameworks. Nat Chem. 2011 Nov 6;4(2):83–89.
  • Moosavi SM, Nandy A, Jablonka KM, et al. Understanding the diversity of the metal-organic framework ecosystem. Nat Commun. 2020;11:4068.
  • Shi Z, Yang W, Deng X, et al. Machine-learning-assisted high-throughput computational screening of high performance metal-organic frameworks. Mol Syst Des Eng. 2020;5:725–742.
  • Aghaji MZ, Fernandez M, Boyd PG, et al. Quantitative structure-property relationship models for recognizing metal organic frameworks (MOFs) with high CO2 working capacity and CO2/ CH4 selectivity for methane purification. Eur J Inorg Chem. 2016;2016:4505–4511.
  • Moghadam PZ, Li A, Liu XW, et al. Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD). Chem Sci. 2020; 11(32):8373–8387. Advance Article
  • Colón YJ, Gómez-Gualdrón DA, Snurr RQ. Topologically guided, automated construction of metal-organic frameworks and their evaluation for energy-related applications. Crystal Growth & Design. 2017;17(11):5801–5810.
  • Gómez-Gualdrón DA, Colón YJ, Zhang X, et al. Evaluating topologically diverse metal-organic frameworks for cryo-adsorbed hydrogen storage. Energy Environ Sci. 2016;9:3279–3289.
  • Andersona R, Gómez-Gualdrón DA. Increasing topological diversity during computational “synthesis” of porous crystals: how and why. CrystEngComm. 2019;21:1653–1665.
  • Bao Y, Martin RL, Haranczyk M, et al. In silico prediction of MOFs with high deliverable capacity or internal surface area. Phys Chem Chem Phys. 2015 May 14;17(18):11962–11973.
  • Bao Y, Martin RL, Simon CM, et al. In silico discovery of high deliverable capacity metal-organic frameworks. J Phys Chem C. 2015;119(1):186–195.
  • Gomez-Gualdron DA, Gutov OV, Krungleviciute V, et al. Computational design of metal-organic frameworks based on stable zirconium building units for storage and delivery of methane. Chem Mater. 2014;26(19):5632–5639.
  • Martin RL, Lin LC, Jariwala K, et al. Mail-order metal-organic frameworks (MOFs): designing isoreticular MOF-5 analogues comprising commercially available organic molecules. J Phys Chem C. 2013;117(23):12159–12167.
  • Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Dev. July 1959;3(3):210–229.
  • Das A, Jain A. Indexing the world wide web: The journey so far. Google Inc., USA. Available from: https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37043.pdf
  • Dada EG, Bassi JS, Chiroma H, et al. Machine learning for email spam filtering: review, approaches and open research problems. Heliyon. 2019;5(6):e01802.
  • Covington P, Adams J, Sargin E. Deep neural networks for YouTube recommendations. CA: Google Mountain View. Available from: https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45530.pdf
  • Gomez-Uribe CA, Hunt N. The Netflix recommender system: algorithms, business value, and innovation. ACM Trans Manage Inf Syst. 2016;6(4):13. Article (January 2016), 19 pages. Available from: https://doi.org/10.1145/2843948
  • Singh A, Thakur N, Sharma A. A review of supervised machine learning algorithms. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom); New Delhi: 2016. p. 1310–1315.
  • Fernandez M, Boyd PG, Daff TD, et al. Rapid and accurate machine learning recognition of high performing metal organic frameworks for CO 2 capture. J Phys Chem Lett. 2014;5(17):3056–3060.
  • Fernandez M, Barnard AS. Geometrical properties can predict CO2 and N2 adsorption performance of metal-organic frameworks (MOFs) at low pressure. ACS Comb Sci. 2016;18(5):243–252.
  • Sivaraman G, Jackson NE, Sanchez-Lengeling B, et al. A diversified machine learning strategy for predicting and understanding molecular melting points. 2019.
  • Venkatraman V, Evjen S, Knuutila HK, et al. Predicting ionic liquid melting points using machine learning. J Mol Liq. 2018;264:318–326.
  • Wu H, Fang WZ, Wang Q, et al. Predicting effective diffusivity of porous media from images by deep learning. Sci Rep. 2019;9:20387.
  • Muñoz-Gil G, Garcia-March MA, Manzo C, et al. Single trajectory characterization via machine learning. New J Phys. 2020;22:013010.
  • Himanen L, Marc OJ, Jäger EV, et al. DScribe: library of descriptors for machine learning in materials science. Comput Phys Commun. 2020;247:106949.
  • Ward L, Dunn A, Faghaninia A, et al. Matminer: an open source toolkit for materials data mining. Comput Mater Sci. 2018;152:60–69.
  • Ong SP, Richards WD, Jain A, et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci. 2013;68:314–319.
  • RDKit: Open-source cheminformatics. Available from: http://www.rdkit.org.
  • Ramprasad R, Batra R, Pilania G, et al. Machine learning in materials informatics: recent applications and prospects. npj Comput Mater. 2017;3:54.
  • Quirós M, Gražulis S, Girdzijauskaitė S, et al. Using SMILES strings for the description of chemical connectivity in the crystallography open database. J Cheminform. 2018;10:23.
  • Turner CR, Fuggetta A, Lavazza L, et al. A conceptual basis for feature engineering. J Syst Soft. 1999;49(1):1999.
  • Feature engineering for machine learning: principles and techniques for data scientists. In: Zheng A, Casari A, editors. 2018. Available from: books.google.com.
  • Dimensionality reduction: a comparative review. van der Maaten L, Postma E, van den Herik J, editors. TiCC, Tilburg University; October 26, 2009.
  • Pearson K. LIII. on lines and planes of closest fit to systems of points in space. Lond Edinb Dublin Philos Mag J Sci. 1901;2(11):559–572. DOI: 10.1080/14786440109462720.
  • Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels. Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468); Madison (WI): 1999. p. 41–48.
  • Ren B, Pueyo L, Zhu GB. Non-negative matrix factorization: robust extraction of extended structures. Astrophys J. 2018;852(2):104.
  • Dimensionality reduction: a comparative review. In: van der Maaten L, Postma E, van den Herik, J, editors. Source: Tilburg University; TiCC TR 2009-005. 2009.
  • Ambusaidi MA, He X, Nanda P, et al. Building an intrusion detection system using a filter-based feature selection algorithm. IEEE Trans Comput. 1 Oct 2016;65(10):2986–2998.
  • Sánchez-Maroño N, Alonso-Betanzos A, Tombilla-Sanromán M. Filter methods for feature selection – a comparative study. Intelligent Data Engineering and Automated Learning – IDEAL 2007. p. 178–187.
  • Asaithambi S. Why, how and when to apply feature selection. https://towardsdatascience.com/why-how-and-when-toapply-feature-selection-e9c69adfabf2#:∼:text=F%20Test,a%20constant%20and%20a%20feature.
  • Sadeghyan S. A new robust feature selection method using variance-based sensitivity analysis. arXiv:1804.05092.
  • Jin X, Xu A, Bie R, et al. Machine learning techniques and chi-square feature selection for cancer classification using sage gene expression profiles. Data mining for biomedical applications. 2006.
  • Gu Q, Li Z, Han J. Generalized Fisher score for feature selection. 2012. arXiv:1202.3725.
  • Pirgazi J, Alimoradi M, Abharian TE, et al. An efficient hybrid filter-wrapper metaheuristic-based gene selection method for high dimensional datasets. Sci Rep. 2019;9:18580.
  • Brownlee J. Recursive feature elimination (RFE) for feature selection in Python. Available from: https://machinelearningmastery.com/rfe-feature-selection-in-python/
  • Somol P, Baesens B, Pudil P, et al. Filter-versus wrapper-based feature selection for credit scoring. Int J Intell Syst. 2005;20:985–999.
  • Lal TN, Chapelle O, Weston J, et al. Embedded methods. Feature extraction. p 137–165.
  • Gauraha N. Introduction to the LASSO. Reson. 2018;23:439–464. Available from: https://doi.org/10.1007/s12045-018-0635-x
  • Yashkov IB. Feature selection using decision trees in the problem of JSM classification. Autom Doc Math Linguist. 2014;48:6–11. Available from: https://doi.org/10.3103/S000510551401004X
  • Wan L, Zeiler M, Zhang S. Regularization of neural networks using dropconnect. Proceedings of the 30th international conference on Machine Learning; 2013 Jun 16–21; Atlanta (GA): ACM; 2013. p. 1058–1066.
  • Claesen M, De Moor B. Hyperparameter search in machine learning. 2015. arXiv:1502.02127.
  • Bergstra J, Bardenet R, Bengio Y, et al. Algorithms for hyper-parameter optimization (PDF). Advances in neural information processing systems. 2011.
  • Bergstra J, Bengio Y. Random search for hyper-Parameter optimization (PDF). J Mach Learn Res. 2012;13:281–305.
  • Wang Z, Hutter F, Zoghi M. Bayesian optimization in a billion dimensions via random embeddings. J Artif Intell Res. 2016;55:361–387. arXiv:1301.1942. DOI: 10.1613/jair.4806
  • Hutter F, Hoos H, Leyton-Brown K. Sequential model-based optimization for general algorithm configuration (PDF), learning and intelligent optimization. Lecture notes computer science. 2011;6683:507–523. CiteSeerX 10.1.1.307.8813, DOI: 10.1007/978-3-642-25566-340, ISBN 978-3-642-25565-6.
  • Franceschi L, Donini M, Frasconi P, et al. Forward and reverse gradient-based hyperparameter optimization (PDF). Proceedings of the 34th International Conference on Machine Learning; 2017. arXiv:1703.01785.
  • Jaderberg M, Dalibard V, Osindero S, et al. Population based training of neural networks. 2017. arXiv:1711.09846
  • Jung Y, Hu J. A K-fold averaging cross-validation procedure. J Nonparametr Stat. 2015;27(2):167–179. DOI: 10.1080/10485252.2015.1010532. Epub 2015 Feb 26. PMID: 27630515; PMCID: PMC5019184.
  • Simon CM, Mercado R, Schnell SK, et al. What are the best materials to separate a xenon/krypton mixture?. Chem Mater. 2015;27(12):4459–4475.
  • Collins SP, Daff TD, Piotrkowski SS, et al. Materials design by evolutionary optimization of functional groups in metal-organic frameworks. Sci Adv. 23 Nov 2016;2(11):e1600954.
  • Evans JD, Coudert F-X. Predicting the mechanical properties of zeolite frameworks by machine learning. Chem Mater. 2017;29(18):7833–7839.
  • Borboudakis G, Stergiannakos T, Frysali M, et al. Chemically intuited, large-scale screening of MOFs by machine learning techniques. npj Comput Mater. 2017;3:40.
  • Thornton AW, Simon CM, Kin J, et al. Materials genome in action: identifying the performance limits of physical hydrogen storage. Chem Mater. 2017;29(7):2844–2854.
  • Pardakhti M, Moharreri E, Wanik D, et al. Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of metal organic frameworks (MOFs). ACS Comb Sci. 2017;19(10):640–645.
  • Qiao Z, Xu Q, Cheetham AK, et al. High-throughput computational screening of metal-organic frameworks for thiol capture. J Phys Chem C. 2017;121(40):22208–22215.
  • Anderson R, Rodgers J, Argueta E, et al. High-throughput computational screening of metal-organic frameworks for thiol capture. Chem Mater. 2018;30(18):6325–6337.
  • Zhuo Y, Mansouri Tehrani A, Brgoch J. Predicting the band gaps of inorganic solids by machine learning. J Phys Chem Lett. 2018;9(7):1668–1673.
  • Lu S, Zhou Q, Ouyang Y, et al. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat Commun. 2018;9:3405.
  • He Y, Cubuk ED, Allendorf MD, et al. Metallic metal-organic frameworks predicted by the combination of machine learning methods and ab initio calculations. J Phys Chem Lett. 2018;9(16):4562–4569.
  • Kirklin S, Saal JE, Meredig B, et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput Mater. 2015;1:15010.
  • Moosavi SM, Chidambaram A, Talirz L, et al. Capturing chemical intuition in synthesis of metal-organic frameworks. Nat Commun. 2019;10:539.
  • Liang H, Yang W, Peng F. Combining large-scale screening and machine learning to predict the metal-organic frameworks for organosulfurs removal from high-sour natural gas. APL Mater. September 2019;7(9):091101.
  • Yang W, Liang H, Peng F, et al. Computational screening of metal-Organic framework membranes for the separation of 15 gas mixtures. Nanomaterials. 2019 Mar 20;9(3):467.
  • Dureckova H, Krykunov M, Aghaji MZ, et al. Robust machine learning models for predicting high CO2 working capacity and CO2/H2 selectivity of gas adsorption in metal organic frameworks for precombustion carbon capture. J Phys Chem C. 2019;123(7):4133–4139.
  • Fernandez M, Trefiak NR, Woo TK. Atomic property weighted radial distribution functions descriptors of metal-organic frameworks for the prediction of gas uptake capacity. J Phys Chem C. 2013;117(27):14095–14105.
  • Gülsoy Z, Sezginel KB, Uzun A, et al. Analysis of CH4 uptake over metal-Organic frameworks using data-Mining tools. ACS Comb Sci. 2019;21(4):257–268.
  • Wu X, Xiang S, Su J, et al. Understanding quantitative relationship between methane storage capacities and characteristic properties of metal-Organic frameworks based on machine learning. J Phys Chem C. 2019;123(14):8550–8559.
  • Shi Z, Liang H, Yang W, et al. Machine learning and in silico discovery of metal-organic frameworks: methanol as a working fluid in adsorption-driven heat pumps and chillers. Chem Eng Sci. 2020;214:115430.
  • Shao Y, Hellström M, Mitev PD. PiNN: a python library for building atomic neural networks of molecules and materials. J Chem Inf Model. 2020;60(3):1184–1193.
  • Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett. 2 April 2007;98:146401. Published
  • Larsen AH, Mortensen JJ, Blomqvist J, et al. The atomic simulation environment-a python library for working with atoms. J Phys: Condens Matter. 2017;29:273002.
  • Velde G, Bickelhaupt FM, Baerends EJ, et al. Chemistry with ADF. J Comput Chem. 2001;22:931–967. Availalbe from: https://doi.org/10.1002/jcc.1056.
  • Ruddigkeit L, van Deursen R, Blum LC, et al. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model. 2012;52:2864–2875.
  • Ramakrishnan R, Dral PO, Rupp M. Quantum chemistry structures and properties of 134 kilo molecules. Sci Data. 2014;1:140022.
  • Rabbani A, Babaei M, Shams R, et al. DeePore: a deep learning workflow for rapid and comprehensive characterization of porous materials. Adv Water Resour. 2020;146:103787. ISSN 0309-1708. Available from: https://doi.org/10.1016/j.advwatres.2020.103787
  • First EL, Floudas CA. MOFomics: computational pore characterization of metal-organic frameworks. Microporous Mesoporous Mater. 2013;165:32–39.
  • Ohno H, Yusuke Mukae Y. Machine learning approach for prediction and search: application to methane storage in a metal-organic framework. J Phys Chem C. 2016;120(42):23963–23968.
  • Lee Y, Barthel S, Dłotko P, et al. Quantifying similarity of pore-geometry in nanoporous materials. Nat Commun. 2017;8:15396.
  • Bucior BJ, Bobbitt NS, Islamoglu T, et al. Energy-based descriptors to rapidly predict hydrogen storage in metal-organic frameworks. Mol Syst Des Eng. 2019;4:162–174.
  • Sturluson A, Huynh MT, York AHP, et al. Eigencages: learning a latent space of porous cage molecules. ACS Cent Sci. 2018;4(12):1663–1676.
  • Gusarov S, Stoyanov SR, Siahrostami S. Development of Fukui function based descriptors for a machine learning study of CO2 reduction. J Phys Chem C. 2020;124(18):10079–10084.
  • Wei H, Bao H, Ruan X. Machine learning prediction of thermal transport in porous media with physics-based descriptors. Int J Heat Mass Transf. 2020;160:120176. ISSN 0017-9310
  • Neumann M, Machado Charry E, Zojer K, et al. On variability and interdependence of local porosity and local tortuosity in porous materials: a case study for sack paper. Methodol Comput Appl Probab. 2020; 1–15. Available from: https://doi.org/10.1007/s11009-019-09761-1:
  • Moosavi SM, Xu H, Chen L, et al. Geometric landscapes for material discovery within energy-structure-function maps. Chem Sci. 2020;11:5423–5433.
  • Krishnapriyan AS, Haranczyk M, Morozov D. Topological descriptors help predict guest adsorption in nanoporous materials. J Phys Chem C. 2020;124(17):9360–9368.
  • Fanourgakis GS, Gkagkas K, Tylianakis E, et al. A robust machine learning algorithm for the prediction of methane adsorption in nanoporous materials. J Phys Chem A. 2019;123(28):6080–6087.
  • Käärik M, Arulepp M, Käärik M, et al. Characterization and prediction of double-layer capacitance of nanoporous carbon materials using the quantitative nano-structure-property relationship approach based on experimentally determined porosity descriptors. Carbon. 2020;158:494–504.
  • Zhang X, Cui J, Zhang K, et al. Machine learning prediction on properties of nanoporous materials utilizing pore geometry barcodes. J Chem Inf Model. 2019;59(11):4636–4644.
  • Isayev O, Oses C, Toher C, et al. Universal fragment descriptors for predicting properties of inorganic crystals. Nat Commun. 2017;8:15679. Available from: https://doi.org/10.1038/ncomms15679
  • Evans JD, Huang DM, Haranczyk M, et al. Computational identification of organic porous molecular crystals. CrystEngComm. 2016;18:4133–4141.
  • Goltl F, Müller P, Uchupalanun P, et al. Developing a descriptor-based approach for CO and NO adsorption strength to transition metal sites in zeolites. Chem Mater. 2017;29(15):6434–6444.
  • Pinheiro M, Martin RL, Rycroft CH, et al. Characterization and comparison of pore landscapes in crystalline porous materials. J Mol Graphics Model. 2013;44:208–219. ISSN 1093-3263.
  • Shih C, Park J, Sholl DS, et al. Hierarchical Bayesian estimation for adsorption isotherm parameter determination. Chem Eng Sci. 2020;214:115435.
  • Chung YG, Gómez-gualdrn DA, Li P, et al. In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm. Sci Adv. 14 OCT 2016;2:E1600909.
  • Bajusz D, Rácz A, Héberger K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?. J Cheminform. 2015 May 20;7:20.
  • Noh J, Kim J, Stein HS, et al. Inverse design of solid-State materials via a continuous representation. Matter. 2019;1(5):1370–1384.
  • Tutorial on variational Autoencoders Carl Doersch. 2016 Tutorial of arxiv.
  • E(n) Equivariant graph neural networks. In: Satorras VG, Hoogeboom E, Welling M, editors. arXiv:2102.09844v1.
  • Ma R, Colón YJ, Luo T. Transfer learning study of gas adsorption in metal-Organic frameworks. ACS Appl Mater Interfaces. 2020;12(30):34041–34048.
  • Smith JS, Isayev O, Roitberg AE. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci. 2017;8:3192–3203.
  • Pizzi G, Cepellotti A, Sabatini R, et al. AiiDA: automated interactive infrastructure and database for computational science. Comput Mater Sci. 2015;111: DOI: 10.1016/j.commatsci.2015.09.013.
  • Jain A, Ong SP, Chen W, et al. FireWorks: a dynamic workflow system designed for high-throughput applications. Concurr Comput: Pract Exper. 17 December 2015;27:5037–5059.
  • Willems TF, Rycroft CH, Kazi M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 2012;149(1):134–141.
  • Sarkisov L, Harrison A. Computational structure characterisation tools in application to ordered and disordered porous materials. Mol Simul. 2011;37(15):1248–1257.
  • Adorf CS, Moore TC, Melle YJU, et al. Analysis of self-assembly pathways with unsupervised machine learning algorithms. J Phys Chem B. 2020;124(1):69–78.