192
Views
2
CrossRef citations to date
0
Altmetric
Articles

Investigating the binding affinities of fructose and galactose to human serum albumin: simulation studies

, , , & ORCID Icon
Pages 738-747 | Received 15 Feb 2021, Accepted 22 Apr 2021, Published online: 12 May 2021

References

  • Alvarez B, Carballal S, Turell L, et al. Chapter 5 - formation and reactions of sulfenic acid in human serum albumin. In: Cadenas E, Packer L, editor. Methods in enzymology. Vol. 473. Uruguay: Academic Press; 2010. p. 117–136.
  • Petitpas I, Bhattacharya AA, Twine S, et al. Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site I. J Biol Chem. 2001;276:22804–22809.
  • Anguizola J, Matsuda R, Barnaby OS, et al. Review: glycation of human serum albumin. Clin Chim Acta. 2013;425:64–76. Epub 2013/07/24.
  • Awang T, Wiriyatanakorn N, Saparpakorn P, et al. Understanding the effects of two bound glucose in Sudlow site I on structure and function of human serum albumin: theoretical studies. J Biomol Struct Dyn. 2017;35:781–790.
  • Pongprayoon P, Gleeson MP. Probing the binding site characteristics of HSA: a combined molecular dynamics and cheminformatics investigation. J Mol Graphics Model. 2014;54:164–173.
  • Jana AK, Batkulwar KB, Kulkarni MJ, et al. Glycation induces conformational changes in the amyloid-β peptide and enhances its aggregation propensity: molecular insights. Phys Chem Chem Phys. 2016;18:31446–31458.
  • Friedrichs BTP, Jr. All about albumin: biochemistry, genetics, and medical applications. XX and 432 pages, numerous figures and tables. Academic Press, Inc., San Diego, California, 1996. Price: 85.00 US $. Food/Nahrung. 1997;41:382.
  • Shaklai N, Garlick RL, Bunn HF. Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J Biol Chem. 1984;259:3812–3817.
  • Bourdon E, Loreau N, Blache D. Glucose and free radicals impair the antioxidant properties of serum albumin. FASEB J. 1999;13:233–244.
  • Joseph KS, Anguizola J, Hage DS. Binding of tolbutamide to glycated human serum albumin. J Pharm Biomed Anal. 2011;54:426–432. Epub 2010/09/15.
  • Wang Y, Yu H, Shi X, et al. Structural mechanism of ring-opening reaction of glucose by human serum albumin. J Biol Chem. 2013;288:15980–15987. Epub 2013/04/16.
  • Mohamadi-Nejad A, Moosavi-Movahedi AA, Hakimelahi GH, et al. Thermodynamic analysis of human serum albumin interactions with glucose: insights into the diabetic range of glucose concentration. Int J Biochem Cell Biol. 2002;34:1115–1124.
  • Roohk HV, Zaidi AR. A review of glycated albumin as an intermediate glycation index for controlling diabetes. J Diabetes Sci Technol. 2008;2:1114–1121.
  • Hui C, Tingting C, Yujun S. Glycation of human serum albumin in diabetes: impacts on the structure and function. Curr Med Chem. 2015;22:4–13.
  • Inaba M, Okuno S, Kumeda Y, et al. Glycated albumin is a better glycemic indicator than glycated hemoglobin values in hemodialysis patients with diabetes: effect of anemia and erythropoietin injection. J Am Soc Nephrol. 2007;18:896–903.
  • Rohovec J, Maschmeyer T, Aime S, et al. The structure of the sugar residue in glycated human serum albumin and its molecular recognition by phenylboronate. Chem A Eur J. 2003;9:2193–2199.
  • Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 1999;344(Pt 1):109–116.
  • Lapolla A, Fedele D, Reitano R, et al. Enzymatic digestion and mass spectrometry in the study of advanced glycation end products/peptides. J Am Soc Mass Spectrom. 2004;15:496–509.
  • Wa C, Cerny RL, Clarke WA, et al. Characterization of glycation adducts on human serum albumin by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chim Acta. 2007;385:48–60.
  • Barnaby OS, Cerny RL, Clarke W, et al. Comparison of modification sites formed on human serum albumin at various stages of glycation. Clin Chim Acta. 2011;412:277–285.
  • Nasiri R, Bahrami H, Zahedi M, et al. A theoretical elucidation of glucose interaction with HSA's domains. J Biomol Struct Dyn. 2010;28:211–226.
  • Suárez G, Rajaram R, Oronsky AL, Gawinowicz MA. Nonenzymatic glycation of bovine serum albumin by fructose (fructation): comparison with the maillard reaction initiated by glucose. J Biol Chem. 1989;264:3674–3679.
  • Syrový I. Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehyde measured using four methods. J Biochem Biophys Methods. 1994;28:115–121.
  • Szkudlarek A, Maciążek-Jurczyk M, Chudzik M, et al. Alteration of human serum albumin tertiary structure induced by glycation: spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc. 2016;153:560–565.
  • Frost L, Chaudhry M, Bell T, et al. In vitro galactation of human serum albumin: analysis of the protein’s galactation sites by mass spectrometry. Anal Biochem. 2011;410:248–256.
  • Urbanowski JC, Cohenford MA, Dain JA. Nonenzymatic galactosylation of human serum albumin. Vitro Preparation. 1982;257:111–115.
  • Prasongkit J, Martins ED, de Souza FAL, et al. Topological line defects around graphene nanopores for DNA sequencing. J Phys Chem C. 2018;122:7094–7099.
  • Szkudlarek A, Sułkowska A, Maciążek-Jurczyk M, et al. Effects of non-enzymatic glycation in human serum albumin: spectroscopic analysis. Spectrochim Acta A Mol Biomol Spectrosc. 2016;152:645–653.
  • Baraka-Vidot J, Planesse C, Meilhac O, et al. Glycation alters ligand binding, enzymatic, and pharmacological properties of human albumin. Biochemistry. 2015;54:3051–3062.
  • Pongprayoon P, Mori T. Critical role of dimer formation in monosaccharide binding to human serum albumin. Phys Chem Chem Phys. 2017;20:3249–3257.
  • Aring J, Schlepper-Schaefer J, Burkart V, et al. Nonenzymatically glycated serum albumin: interaction with galactose-specific liver lectins. Biochim Biophys Acta. 1989;1010:140–144.
  • Castellanos MM, Colina CM. Molecular dynamics simulations of human serum albumin and role of disulfide bonds. J Phys Chem B. 2013;117:11895–11905.
  • Rahnama E, Mahmoodian-Moghaddam M, Khorsand-Ahmadi S, et al. Binding site identification of metformin to human serum albumin and glycated human serum albumin by spectroscopic and molecular modeling techniques: a comparison study. J Biomol Struct Dyn. 2015;33:513–533.
  • Ketrat S, Japrung D, Pongprayoon P. Exploring how structural and dynamic properties of bovine and canine serum albumins differ from human serum albumin. J Mol Graph Model. 2020;98:107601. Epub 2020/04/21.
  • Awang T, Thangsan P, Luksirikul P, et al. The adsorption of glycated human serum albumin-selective aptamer onto a graphene sheet: simulation studies. Mol Simul. 2019;45:841–848.
  • Abou-Zied OK, Al-Lawatia N, Elstner M, et al. Binding of hydroxyquinoline probes to human serum albumin: combining molecular modeling and förster’s resonance energy transfer spectroscopy to understand flexible ligand binding. J Phys Chem B. 2013;117:1062–1074.
  • Aghaee E, Ghasemi JB, Manouchehri F, et al. Combined docking, molecular dynamics simulations and spectroscopic studies for the rational design of a dipeptide ligand for affinity chromatography separation of human serum albumin. J Mol Model. 2014;20:2446.
  • Li J, Jiang L, Zhu X. Computational studies of the binding mechanisms of fullerenes to human serum albumin. J Mol Model. 2015;21:177.
  • Meneghini C, Leboffe L, Bionducci M, et al. The five-to-six-coordination transition of ferric human serum heme-albumin is allosterically-modulated by ibuprofen and warfarin: a combined XAS and MD study. PLoS One. 2014;9:e104231-e.
  • Krieger E, Vriend G. New ways to boost molecular dynamics simulations. J Comput Chem. 2015;36:996–1007.
  • Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model. 2001;7:306–317.
  • Hornak V, Abel R, Okur A, et al. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct Function Bioinformatics. 2006;65:712–725.
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10092.
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126.
  • Humphrey W, Dalke A, Schulten K. VMD - visual molecular dynamics. J Mol Graph. 1996;14:33–38.
  • Kumari R, Kumar R. Open source drug discovery C, lynn A. g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54:1951–1962. Epub 2014/05/23.
  • Pongprayoon P, Mori T. The critical role of dimer formation in monosaccharides binding to human serum albumin. Phys Chem Chem Phys. 2018;20:3249–3257. Epub 2017/11/09.
  • Somboon K, Niramitranon J, Pongprayoon P. Probing the binding affinities of imipenem and ertapenem for outer membrane carboxylate channel D1 (OccD1) from P. aeruginosa: simulation studies. J Mol Model. 2017;23:227. Epub 2017/07/19.
  • Pongprayoon P, Gleeson MP. Probing the binding site characteristics of HSA: a combined molecular dynamics and cheminformatics investigation. J Mol Graph Model. 2014;54:164–173. Epub 2014/12/03.
  • Anguizola J, Matsuda R, Barnaby OS, et al. Review: glycation of human serum albumin. Clin Chim Acta. 2013;425:64–76.
  • Joseph KS, Anguizola J, Jackson AJ, et al. Chromatographic analysis of acetohexamide binding to glycated human serum albumin. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878:2775–2781. Epub 2010/09/11.
  • Joseph KS, Hage DS. The effects of glycation on the binding of human serum albumin to warfarin and L-tryptophan. J Pharm Biomed Anal. 2010;53:811–818. Epub 2010/06/12.
  • Anguizola JA, Basiaga SB, Hage DS. Effects of fatty acids and glycation on drug interactions with human serum albumin. Curr Metabolomics. 2013;1:239–250.
  • Wang Y, Yu H, Shi X, et al. Structural mechanism of ring-opening reaction of glucose by human serum albumin. J Biol Chem. 2013;288:15980–15987.
  • Syrovy I. Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehyde measured using four methods. J Biochem Biophys Methods. 1994;28:115–121. Epub 1994/03/01.
  • Wa C, Cerny RL, Clarke WA, et al. Characterization of glycation adducts on human serum albumin by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chim Acta. 2007;385:48–60.
  • Barnaby OS, Cerny RL, Clarke W, et al. Comparison of modification sites formed on human serum albumin at various stages of glycation. Clin Chim Acta. 2011;412:277–285.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.