279
Views
7
CrossRef citations to date
0
Altmetric
Articles

Theoretical studies of Thiazolyl-Pyrazoline derivatives as promising drugs against malaria by QSAR modelling combined with molecular docking and molecular dynamics simulation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 988-1001 | Received 18 Feb 2021, Accepted 15 May 2021, Published online: 07 Jun 2021

References

  • Who. World malaria report. World Malaria Report. 2020.
  • El Bakkouri M, Kouidmi I, Wernimont AK, et al. Structures of the cgmp-dependent protein kinase in malaria parasites reveal a unique structural relay mechanism for activation. Proc Natl Acad Sci. 2019;116(28):14164–14173. Available from: https://www.pnas.org/content/116/28/14164.
  • Vidadala RSR, Ojo KK, Johnson SM, et al. Development of potent and selective Plasmodium falciparum calcium-dependent protein kinase 4 (pfcdpk4) inhibitors that block the transmission of malaria to mosquitoes. Eur J Med Chem. 2014;74:562–573. Available from: http://www.sciencedirect.com/science/article/pii/S0223523414000105.
  • Moussaoui D, Robblee JP, Auguin D, et al. Full-length Plasmodium falciparum myosin a and essential light chain pfelc structures provide new anti-malarial targets. eLife. 2020;9:1–24.
  • Tuteja R. Helicases feasible antimalarial drug target for Plasmodium falciparum. FEBS J. 2007;274(18):4699–4704. DOI:10.1111/j.1742-4658.2007.06000.x.
  • Daniyan MO, Blatch GL. Plasmodial Hsp40s: new avenues for antimalarial drug discovery. Curr Pharm Des. 2017;23(30):4555–4570. DOI:10.2174/1381612823666170124142439.
  • Doerig C, Billker O, Pratt D, et al. Protein kinases as targets for antimalarial intervention: kinomics, structure-based design, transmission-blockade, and targeting host cell enzymes. Biochim Biophys Acta (BBA) Proteins Proteom. 2005;1754(1):132–150. Inhibitors of Protein Kinases. 4th International Conference, Inhibitors of Protein Kinases and Associated Workshop: Modelling of Specific Molecular Recognition Processes (Warsaw, Poland, June 2005. p. 25–29); Available from: https://www.sciencedirect.com/science/article/pii/S1570963905003377.
  • Ojha PK, Roy K. Exploring molecular docking and QSAR studies of plasmepsin-II inhibitor di-tertiary amines as potential antimalarial compounds. Mol Simul. 2011;37(9):779–803. DOI:10.1080/08927022.2010.548384.
  • Ibrahim MA, Abdelrahman AH, Hassan AM. Identification of novel Plasmodium falciparum pi4kb inhibitors as potential anti-malarial drugs: homology modeling, molecular docking and molecular dynamics simulations. Comput Biol Chem. 2019;80:79–89. Available from: http://www.sciencedirect.com/science/article/pii/S1476927118302950.
  • Lima MNN, Cassiano GC, Tomaz KCP, et al. Integrative multi-kinase approach for the identification of potent antiplasmodial hits. Front Chem. 2019;7:773. Available from: https://www.frontiersin.org/article/10.3389/fchem.2019.00773.
  • Abdullahi M, Shallangwa GA, Uzairu A. In silico QSAR and molecular docking simulation of some novel aryl sulfonamide derivatives as inhibitors of h5n1 influenza a virus subtype Beni-Suef University. J Basic Appl Sci. 2020 Jan;9(1):2. DOI:10.1186/s43088-019-0023-y.
  • Kurniawan I, Rosalinda M, Ikhsan N. Implementation of ensemble methods on QSAR study of ns3 inhibitor activity as anti-dengue agent. SAR QSAR Environ Res. 2020;31(6):477–492. DOI:10.1080/1062936X.2020.1773534.
  • Kurniawan I, Tarwidi D, Jondri J. QSAR modeling of PTP1b inhibitor by using genetic algorithm-neural network methods. J Phys Conf Ser. 2019 Mar;1192:012059. DOI:10.1088/1742-6596/1192/1/012059.
  • Tadayon M, Garkani-Nejad Z. In silico study combining QSAR, docking and molecular dynamics simulation on 2,4-disubstituted pyridopyrimidine derivatives. J Recep Signal Transduct. 2019;39(2):167–174. DOI:10.1080/10799893.2019.1641821.
  • Hdoufane I, Stoycheva J, Tadjer A. Qsar and molecular docking studies of indole-based analogs as HIV-1 attachment inhibitors. J Mol Struct. 2019;1193:429–443. Available from: http://www.sciencedirect.com/science/article/pii/S0022286019306209.
  • Azmi HF, Lhaksmana KM, Kurniawan I. QSAR study of fusidic acid derivative as anti-malaria agents by using artificial neural network-genetic algorithm. In: 2020 8th International Conference on Information and Communication Technology (ICoICT); Jun 2020. p. 1–4.
  • Rahman F, Lhaksmana KM, Kurniawan I. Implementation of simulated annealing-support vector machine on QSAR study of fusidic acid derivatives as anti-malarial agent. In: 2020 6th International Conference on Interactive Digital Media (ICIDM); Dec 2020. p. 1–4.
  • Kurniawan I, Fareza MS, Iswanto P. CoMFA, molecular docking and molecular dynamics studies on cycloguanil analogues as potent antimalarial agents. Indones J Chem. 2020 Sep;21(1):66–76. Number: 1; Available from: https://jurnal.ugm.ac.id/ijc/article/view/52388.
  • Blaney JM, Dixon JS. A good ligand is hard to find: automated docking methods. Perspect Drug Discov Des. 1993 Dec;1(2):301–319. DOI:10.1007/BF02174531.
  • Baxter CA, Murray CW, Waszkowycz B, et al. New approach to molecular docking and its application to virtual screening of chemical databases. J Chem Inf Comput Sci. 2000;40(2):254–262. DOI:10.1021/ci990440d.
  • Kitchen DB, Decornez H, Furr JR, et al. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004 Nov;3(11):935–949. DOI:10.1038/nrd1549.
  • Cuartas V, Robledo SM, Vlez ID, et al. New thiazolyl-pyrazoline derivatives bearing nitrogen mustard as potential antimicrobial and antiprotozoal agents. Arch Pharm (Weinheim). 2020;353(5):e1900351. DOI:10.1002/ardp.201900351.
  • Yap CW. Padel-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem. 2011;32(7):1466–1474. DOI:10.1002/jcc.21707.
  • Kim S, Cho KH. Pyqsar: a fast QSAR modeling platform using machine learning and jupyter notebook. Bull Korean Chem Soc. 2019;40(1):39–44. DOI:10.1002/bkcs.11638.
  • Breiman L, Friedman JH, Olshen RA, et al. Classification and regression trees. New York (NY): Chapman and Hall/CRC; 1984.
  • Breiman L. Random forests. Mach Learn. 2004 Aug;45(3):5–32.
  • Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995 Sep;20(3):273–297. DOI:10.1007/BF00994018.
  • Vapnik VN. Statistical learning theory. United States: Wiley-Interscience; 1998.
  • Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat Comput. 2004 Aug;14(3):199–222. DOI:10.1023/B:STCO.0000035301.49549.88.
  • Rossum G. Python reference manual. NLD; 1995.
  • Roy K, Chakraborty P, Mitra I, et al. Some case studies on application of ‘rm2’ metrics for judging quality of quantitative structure-activity relationship predictions: emphasis on scaling of response data. J Comput Chem. 2013;34(12):1071–1082. DOI:10.1002/jcc.23231.
  • Gajo GC, De Assis TM, Assis LC, et al. Quantitative structure-activity relationship studies for potential rho-associated protein kinase inhibitors. J Chem. 2016: 9198582. DOI:10.1155/2016/9198582.
  • Roy K, Mitra I. On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb Chem High Throughput Screen. 2011 Jul;14(6):450–474.
  • Veerasamy R, Rajak H, Jain A, et al. Validation of QSAR models – strategies and importance. Int J Drug Design and Discov. 2011 Jul;2:511–519.
  • Ojha PK, Mitra I, Das RN, et al. Further exploring rm2 metrics for validation of QSPR models. Chemometr Intel Laborat Syst. 2011 May;107(1):194–205. Available from: https://www.sciencedirect.com/science/article/pii/S016974391100061X.
  • Roy K, Kar S, Ambure P. On a simple approach for determining applicability domain of QSAR models. 2015;145:22–29. DOI:10.1016/j.chemolab.2015.04.013.
  • De Assis TM, Gajo GC, De Assis LC, et al. QSAR models guided by molecular dynamics applied to human glucokinase activators. Chem Biol Drug Des. 2016;87:455–466. DOI:10.1111/cbdd.12683.
  • Sahigara F, Mansouri K, Ballabio D, et al. Comparison of different approaches to define the applicability domain of QSAR models. Molecules. 2012 Apr;17(5):4791–4810.
  • Morris GM, Huey R, Lindstrom W, et al. Autodock4 and autodocktools4: automated docking with selective receptor flexibility. J Comput Chem. 2009 Dec;30(16):2785–2791. Available from: https://pubmed.ncbi.nlm.nih.gov/19399780.
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926–935.
  • Wang J, Wolf RM, Caldwell JW, et al. Development and testing of a general Amber force field. J Comput Chem. 2004;25(9):1157–1174.
  • Maier JA, Martinez C, Kasavajhala K, et al. ff14sb: improving the accuracy of protein side chain and backbone parameters from ff99sb. J Chem Theory Comput. 2015;11(8):3696–3713. DOI:10.1021/acs.jctc.5b00255.
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103(19):8577–8593. DOI:10.1063/1.470117.
  • Ryckaert JP, Ciccotti G, Berendsen HJ. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977;23(3):327–341. Available from: http://www.sciencedirect.com/science/article/pii/0021999177900985.
  • Loncharich RJ, Brooks BR, Pastor RW. Langevin dynamics of peptides: the frictional dependence of isomerization rates of n-acetylalanyl-n-methylamide. Biopolymers. 1992;32(5):523–535. DOI:10.1002/bip.360320508.
  • Salomon-Ferrer R, Case DA, Walker RC. An overview of the amber biomolecular simulation package. WIREs Comput Mol Sci. 2013;3(2):198–210.
  • Roe DR, Cheatham TE. Ptraj and cpptraj: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9(7):3084–3095.
  • Miller BR, Mcgee TD, Swails JM. MMPBSA. py: an efficient program for end-state free energy calculations. 2012.
  • Todeschini R, Consonni V. Molecular descriptors for chemoinformatics; 2009.
  • Ghose AK, Crippen GM. Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships modeling dispersive and hydrophobic interactions. J Chem Inf Comput Sci. 1987;27(1):21–35. DOI:10.1021/ci00053a005.
  • Giacoppo JO, França TC, Kuča K, et al. Molecular modeling and in vitro reactivation study between the oxime BI-6 and acetylcholinesterase inhibited by different nerve agents. J Biomol Struct Dyn. 2015;33(9):2048–2058. DOI:10.1080/07391102.2014.989408.
  • EA de Lima W, F Pereira A, A de Castro A, et al. Lett drug des discov. flexibility in the molecular design of Acetylcholinesterase reactivators: probing representative conformations by chemometric techniques and Docking/QM calculations. 2015;13(5):360–371. DOI:10.2174/1570180812666150918191550.
  • Wallace AC, Laskowski RA, Thornton JM. Ligplot: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Design Select. 1995;8(2):127–34. DOI:10.1093/protein/8.2.127.
  • Salentin S, Schreiber S, Haupt VJ, et al. PLIP: fully automated protein-ligand interaction profiler. Nucl Acids Res.2015;43(W1):443–447. DOI:10.1093/nar/gkv315.
  • DeLano WL. The PyMOL Molecular Graphics System, Version 2.3; 2020.
  • Kawaguchi K, Arwansyah MS, Kataoka T, et al. Theoretical study of conformational transition of Cdk4 by association of cyclin d3. Mol Phys. 2019;117(17):2355–2361. DOI:10.1080/00268976.2018.1563725.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.