161
Views
3
CrossRef citations to date
0
Altmetric
Articles

Scaling for rectification of bipolar nanopores as a function of a modified Dukhin number: the case of 1:1 electrolytes

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 43-56 | Received 31 Mar 2021, Accepted 17 May 2021, Published online: 07 Jul 2021

References

  • Daiguji, H, Oka, Y, Shirono, K. Nanofluidic diode and bipolar transistor. Nano Lett. 2005;5(11):2274–2280.
  • Constantin, D, Siwy, ZS. Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. Phys Rev E. 2007;76(4):Article ID 041202.
  • Karnik, R, Duan, C, Castelino, K, et al. Rectification of ionic current in a nanofluidic diode. Nano Lett. 2007;7(3):547–551.
  • Vlassiouk, I, Siwy, ZS. Nanofluidic diode. Nano Lett. 2007;7(3):552–556.
  • Kalman, EB, Vlassiouk, I, Siwy, ZS. Nanofluidic bipolar transistors. Adv Mater. 2008;20(2):293–297.
  • Vlassiouk, I, Smirnov, S, Siwy, Z. Nanofluidic ionic diodes: comparison of analytical and numericalsolutions. ACS Nano. 2008;2(8):1589–1602.
  • Yan, R, Liang, W, Fan, R, et al. Nanofluidic diodes based on nanotube heterojunctions. Nano Lett. 2009;9(11):3820–3825.
  • Cheng, LJ, Guo, LJ. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices. ACS Nano. 2009;3(3):575–584.
  • Nguyen, G, Vlassiouk, I, Siwy, ZS. Comparison of bipolar and unipolar ionic diodes. Nanotech. 2010;21(26):Article ID 265301.
  • Guo, W, Tian, Y, Jiang, L. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. Acc Chem Res. 2013;46(12):2834–2846.
  • Ható, Z, Valiskó, M, Kristóf, T, et al. Multiscale modeling of a rectifying bipolar nanopore: explicit-water versus implicit-water simulations. Phys Chem Chem Phys. 2017;19(27):17816–17826.
  • Matejczyk, B, Valiskó, M, Wolfram, MT, et al. Multiscale modeling of a rectifying bipolar nanopore: comparing Poisson-Nernst-Planck to Monte Carlo. J Chem Phys. 2017;146(12):Article ID 124125.
  • Sarkadi, Z, Fertig, D, Ható, Z, et al. From nanotubes to nanoholes: scaling of selectivity in uniformly charged nanopores through the Dukhin number for 1:1 electrolytes. J Chem Phys. 2021;154(15):Article ID 154704.
  • Fertig, D, Matejczyk, B, Valiskó, M, et al. Scaling behavior of bipolar nanopore rectification with multivalent ions. J Phys Chem C. 2019;123(47):28985–28996.
  • Blum, L. Mean spherical model for asymmetric electrolytes. Mol Phys. 1975;30(5):1529–1535.
  • Blum, L, Hoeye, JS. Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function. J Phys Chem. 1977;81(13):1311–1316.
  • Nonner, W, Catacuzzeno, L, Eisenberg, B. Binding and selectivity in L-type calcium channels: a mean spherical approximation. Biophys J. 2000;79(4):1976–1992.
  • Albrecht, T, Gibb, T, Nuttall, P. Ion transport in nanopores. In: Engineered nanopores for bioanalytical applications. Oxford: Elsevier BV; 2013. p. 1–30.
  • Abgrall, P, Nguyen, NT. Nanofluidic devices and their applications. Anal Chem. 2008;80(7):2326–2341.
  • Bocquet, L, Charlaix, E. Nanofluidics, from bulk to interfaces. Chem Soc Rev. 2010;39(3):1073–1095.
  • Daiguji, H. Ion transport in nanofluidic channels. Chem Soc Rev. 2010;39(3):901–911.
  • Eijkel, JCT. Nanofluidics and the chemical potential applied to solvent and solute transport. Chem Soc Rev. 2010;39(3):Article ID 957.
  • Zangle, TA, Mani, A, Santiago, JG. Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. Chem Soc Rev. 2010;39(3):Article ID 1014.
  • Mádai, E, Matejczyk, B, Dallos, A, et al. Controlling ion transport through nanopores: modeling transistor behavior. Phys Chem Chem Phys. 2018;20(37):24156–24167.
  • Cengio, SD, Pagonabarraga, I. Confinement-controlled rectification in a geometric nanofluidic diode. J Chem Phys. 2019;151(4):Article ID 044707.
  • Fertig, D, Valiskó, M, Boda, D. Rectification of bipolar nanopores in multivalent electrolytes: effect of charge inversion and strong ionic correlations. Phys Chem Chem Phys. 2020;22(34):19033–19045.
  • Bazant, MZ, Thornton, K, Ajdari, A. Diffuse-charge dynamics in electrochemical systems. Phys Rev E. 2004;70(2):Article ID 021506.
  • Chu, KT, Bazant, MZ. Nonlinear electrochemical relaxation around conductors. Phys Rev E. 2006;74(1):Article ID 011501.
  • Bikerman, JJ. Electrokinetic equations and surface conductance: a survey of the diffuse double layer theory of colloidal solutions. Trans Farad Soc. 1940;35:Article ID 154.
  • Dukhin, S. Non-equilibrium electric surface phenomena. Adv Coll Interf Sci. 1993;44:1–134.
  • Lyklema, JJ, de Keizer, A, Bijsterbosch, B, et al. Solid-liquid interfaces. In: Fundamentals of interface and colloid science. Vol. 2. Elsevier, Academic Press; 1995.
  • Khair, AS, Squires, TM. Surprising consequences of ion conservation in electro-osmosis over a surface charge discontinuity. J Fluid Mech. 2008;615:323–334.
  • Das, S, Chakraborty, S. Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements. Langmuir. 2010;26(13):11589–11596.
  • Lee, C, Joly, L, Siria, A, et al. Large apparent electric size of solid-state nanopores due to spatially extended surface conduction. Nano Lett. 2012;12(8):4037–4044.
  • Yeh, HC, Wang, M, Chang, CC, et al. Fundamentals and modeling of electrokinetic transport in nanochannels. Israel J Chem. 2014;54(11-12):1533–1555.
  • Ma, Y, Guo, J, Jia, L, et al. Entrance effects induced rectified ionic transport in a nanopore/channel. ACS Sensors. 2017;3(1):167–173.
  • Xiong, T, Zhang, K, Jiang, Y, et al. Ion current rectification: from nanoscale to microscale. Sci China Chem. 2019;62(10):1346–1359.
  • Poggioli, AR, Siria, A, Bocquet, L. Beyond the tradeoff: dynamic selectivity in ionic transport and current rectification. J Phys Chem B. 2019;123(5):1171–1185.
  • Kavokine, N, Netz, RR, Bocquet, L. Fluids at the nanoscale: from continuum to subcontinuum transport. Annu Rev Fluid Mech. 2020;53(1):377–410.
  • Noh, Y, Aluru, NR. Ion transport in electrically imperfect nanopores. ACS Nano. 2020;14(8):10518–10526.
  • Levy, A, de Souza, JP, Bazant, MZ. Breakdown of electroneutrality in nanopores. J Coll Inter Sci. 2020;579:162–176.
  • Siwy, Z, Heins, E, Harrell, CC, et al. Conical-nanotube ion-current rectifiers: the role of surface charge. J Am Chem Soc. 2004;126(35):10850–10851.
  • Garaj, S, Hubbard, W, Reina, A, et al. Graphene as a subnanometre trans-electrode membrane. Nature. 2010;467(7312):190–193.
  • Garaj, S, Liu, S, Golovchenko, JA, et al. Molecule-hugging graphene nanopores. Proc Nat Acad Sci. 2013;110(30):12192–12196.
  • O'Hern, SC, Boutilier, MSH, Idrobo, JC, et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 2014;14(3):1234–1241.
  • Rollings, RC, Kuan, AT, Golovchenko, JA. Ion selectivity of graphene nanopores. Nat Comm. 2016;7(1):Article ID 11408.
  • Thiruraman, JP, Fujisawa, K, Danda, G, et al. Angstrom-size defect creation and ionic transport through pores in single-layer MoS 2. Nano Lett. 2018;18(3):1651–1659.
  • Thiruraman, JP, Das, PM, Drndić, M. Stochastic ionic transport in single atomic zero-dimensional pores. ACS Nano. 2020;14(9):11831–11845.
  • Mádai, E, Valiskó, M, Dallos, A, et al. Simulation of a model nanopore sensor: ion competition underlines device behavior. J Chem Phys. 2017;147(24):Article ID 244702.
  • Malasics, A, Boda, D. An efficient iterative grand canonical monte carlo algorithm to determine individual ionic chemical potentials in electrolytes. J Chem Phys. 2010;132(24):Article ID 244103.
  • Boda, D, Gillespie, D. Steady state electrodiffusion from the Nernst-Planck equation coupled to local equilibrium Monte Carlo simulations. J Chem Theor Comput. 2012;8(3):824–829.
  • Szymczyk, A, Zhu, H, Balannec, B. Ion rejection properties of nanopores with bipolar fixed charge distributions. J Phys Chem B. 2010 Aug;114(31):10143–10150.
  • Singh, KP, Kumar, M. Effect of surface charge density and electro-osmotic flow on ionic current in a bipolar nanopore fluidic diode. J Appl Phys. 2011;110(8):Article ID 084322.
  • Singh, KP, Kumar, M. Effect of nanochannel diameter and debye length on ion current rectification in a fluidic bipolar diode. J Phys Chem C. 2011;115(46):22917–22924.
  • Singh, KP, Kumari, K, Kumar, M. Ion current rectification in a fluidic bipolar nanochannel with smooth junction. Appl Phys Lett. 2011;99(11):Article ID 113103.
  • van Oeffelen, L, Roy, WV, Idrissi, H, et al. Ion current rectification, limiting and overlimiting conductances in nanopores. PLoS ONE. 2015;10(5):Article ID e0124171.
  • Tajparast, M, Virdi, G, Glavinović, MI. Spatial profiles of potential, ion concentration and flux in short unipolar and bipolar nanopores. Biochim Biophys Acta (BBA) – Biomem. 2015;1848(10, Part A):2138–2153.
  • Gillespie, D, Nonner, W, Eisenberg, RS. Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux. J Phys Condens Matter. 2002;14(46):12129–12145.
  • Gillespie, D, Nonner, W, Eisenberg, RS. Density functional theory of charged, hard-sphere fluids. Phys Rev E. 2003;68(3):Article ID 031503.
  • Gillespie, D, Xu, L, Wang, Y, et al. (De)constructing the ryanodine receptor: modeling ion permeation and selectivity of the calcium release channel. J Phys Chem B. 2005;109(32):15598–15610.
  • Gillespie, D. Energetics of divalent selectivity in a calcium channel: the Ryanodine receptor case study. Biophys J. 2008;94(4):1169–1184.
  • Burger, M, Schlake, B, Wolfram, MT. Nonlinear Poisson–Nernst–Planck equations for ion flux through confined geometries. Nonlinearity. 2012;25(4):961–990.
  • Eisenberg, R. PNP what is in a name? 2019 Aug. Preprints 2020. DOI:https://doi.org/10.20944/preprints202009.0599.v1.
  • Boda, D. Monte Carlo simulation of electrolyte solutions in biology: in and out of equilibrium. In: Wheeler RA, editor. Annual reports in computational chemistry. Vol. 10. Elsevier; 2014. p. 127–163.
  • Boda, D, Kovács, R, Gillespie, D, et al. Selective transport through a model calcium channel studied by local equilibrium Monte Carlo simulations coupled to the Nernst-Planck equation. J Mol Liq. 2014;189:100–112.
  • Fertig, D, Mádai, E, Valiskó, M, et al. Simulating ion transport with the NP+LEMC method. Applications to ion channels and nanopores. Hung J Ind Chem. 2017;45(1):73–84.
  • Gillespie, D, Boda, D. The anomalous mole fraction effect in calcium channels: a measure of preferential selectivity. Biophys J. 2008;95(6):2658–2672.
  • Gillespie, D, Boda, D, He, Y, et al. Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing. Biophys J. 2008;95(2):609–619.
  • He, Y, Gillespie, D, Boda, D, et al. Tuning transport properties of nanofluidic devices with local charge inversion. JACS. 2009;131(14):5194–5202.
  • Boda, D, Valiskó, M, Henderson, D, et al. Ion selectivity in L-type calcium channels by electrostatics and hard-core repulsion. J Gen Physiol. 2009;133(5):497–509.
  • Malasics, M, Boda, D, Valiskó, M, et al. Simulations of calcium channel block by trivalent ions: Gd 3+ competes with permeant ions for the selectivity filter. Biochim Biophys Acta – Biomem. 2010;1798(11):2013–2021.
  • Valiskó, M, Matejczyk, B, Ható, Z, et al. Multiscale analysis of the effect of surface charge pattern on a nanopore's rectification and selectivity properties: from all-atom model to poisson-nernst-planck. J Chem Phys. 2019;150(14):Article ID 144703.
  • Boda, D, Valiskó, M, Gillespie, D. Modeling the device behavior of biological and synthetic nanopores with reduced models. Entropy. 2020;22(11):1259.
  • Levine, S, Marriott, JR, Neale, G, et al. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. J Coll Interf Sci. 1975;52(1):136–149.
  • Balme, S, Picaud, F, Manghi, M, et al. Ionic transport through sub-10 nm diameter hydrophobic high-aspect ratio nanopores: experiment, theory and simulation. Sci Rep. 2015;5(1):Article ID 10135.
  • Uematsu, Y, Netz, RR, Bocquet, L, et al. Crossover of the power-law exponent for carbon nanotube conductivity as a function of salinity. J Phys Chem B. 2018;122(11):2992–2997.
  • Green, Y. Ion transport in nanopores with highly overlapping electric double layers. J Chem Phys. 2021;154(8):Article ID 084705.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.