595
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effect of vacancy defects on the thermal transport of β-Ga2O3

, , , & ORCID Icon
Pages 1017-1021 | Received 20 Jan 2021, Accepted 06 Jun 2021, Published online: 21 Jun 2021

References

  • Stepanov SI, Nikolaev VI, Bougrov VE, et al. Gallium oxide: properties and applications – a review. Rev Adv Mater Sci. 2016;44:63–86.
  • Guo Z, Verma A, Wu X, et al. Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl Phys Lett. 2015;106(11):111909.
  • Higashiwaki M, Sasaki K, Murakami H, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 2016;31(3):034001.
  • Higashiwaki M, Kuramata A, Murakami H, et al. State-of-the-art technologies of gallium oxide power devices. J Phys D Appl Phys. 2017;50(33):333002.
  • Sun D, Gao Y, Xue J, et al. Matching vacancy formation energy and defect levels with the density of amorphous Ga2O3. J Mater Sci. 2020;55(22):9343–9353.
  • Bouzid A, Pasquarello A. Defect formation energies of interstitial C, Si, and Ge impurities in β-Ga2O3. Phys Status Solidi RRL. 2019;13(8):1800633.
  • Szwejkowski CJ, Creange NC, Sun K, et al. Size effects in the thermal conductivity of gallium oxide (β-Ga2O3) films grown via open-atmosphere annealing of gallium nitride. J Appl Phys. 2015;117(8):084308.
  • Schubert M, Korlacki R, Knight S, et al. Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals. Phys Rev B. 2016;93(12):125209.
  • Handwerg M, Mitdank R, Galazka Z, et al. Temperature-dependent thermal conductivity in Mg-doped and undoped β-Ga2O3 bulk-crystals. Semicond Sci Technol. 2015;30(2):024006.
  • Ghosh K, Singisetti U. Ab initiocalculation of electron–phonon coupling in monoclinic β-Ga2O3crystal. Appl Phys Lett. 2016;109(7):072102.
  • Galazka Z. β-Ga2O3 for wide-bandgap electronics and optoelectronics. Semicond Sci Technol. 2018;33(11):113001.
  • Zhou H, Maize K, Noh J, et al. Thermodynamic studies of β-Ga2O3 nanomembrane field-effect transistors on a sapphire substrate. ACS Omega. 2017;2(11):7723–7729.
  • Yan Z, Kumar S. Phonon mode contributions to thermal conductivity of pristine and defective β-Ga2O3. Phys Chem Chem Phys. 2018;20(46):29236–29242.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Albuquerque (NM): Sandia National Labs.; 1993.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization tool. Modell Simul Mater Sci Eng. 2009;18(1):015012.
  • Persson K. Materials data on Ga2O3 (SG:12) by materials project (United States); 2014.
  • Lorentz H. Nachtrag zu der abhandlung: ueber die anwendung des satzes vom virial in der kinetischen theorie der gase. Ann Phys. 1881;248(4):660–661.
  • Balasubramanian G, Puri IK, Ragab SA. Dynamics of impinging nanoscale jets. Chem Phys Lett. 2010;491:177–182.
  • Schelling PK, Phillpot SR, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys Rev B. 2002;65(14):144306.
  • Balasubramanian G, Puri IK. Heat conduction across a solid-solid interface: understanding nanoscale interfacial effects on thermal resistance. Appl Phys Lett. 2011;99(1):013116.
  • Katircioǧlu S, Erkoç Ş. Molecular-dynamics simulation of gallium microclusters. J Cryst Growth. 1989;94(3):807–809.
  • Bouanich J-P. Site-site Lennard-Jones potential parameters for N2, O2, H2, CO and CO2. J Quant Spectrosc Radiat Transfer. 1992;47(4):243–250.
  • Keblinski P, Phillpot SR, Choi SUS, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf. 2002;45(4):855–863.
  • Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47(1):558–561.
  • Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011;44(6):1272–1276.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868.
  • Togo A, Chaput L, Tanaka I. Distributions of phonon lifetimes in Brillouin zones. Phys Rev B. 2015;91(9):094306.
  • Togo A, Tanaka I. First principles phonon calculations in materials science. Scr Mater. 2015;108:1–5.
  • Ma X, Zhang Y, Dong L, et al. First-principles calculations of electronic and optical properties of aluminum-doped β-Ga2O3 with intrinsic defects. Results Phys. 2017;7:1582–1589.
  • Geller S. Crystal structure of β-Ga2O3. J Chem Phys. 1960;33(3):676–684.
  • Wang C, Wang H, Chen YB, et al. First-principles study of lattice thermal conductivity in ZrTe5 and HfTe5. J Appl Phys. 2018;123(17):175104.
  • Bourgeois O, Tainoff D, Tavakoli A, et al. Reduction of phonon mean free path: from low-temperature physics to room temperature applications in thermoelectricity. Comptes Rendus Phys. 2016;17(10):1154–1160.
  • Klemens PG. Thermal resistance due to point defects at high temperatures. Phys Rev. 1960;119(2):507–509.
  • Balasubramanian G, Puri IK, Böhm MC, et al. Thermal conductivity reduction through isotope substitution in nanomaterials: predictions from an analytical classical model and nonequilibrium molecular dynamics simulations. Nanoscale. 2011;3(9):3714–3720.
  • Ma J, Meng F, Xu D, et al. Electron mobility and mode analysis of scattering for β-Ga2O3 from first principles. J Phys Condens Matter. 2020;32(46):465704.
  • Marfoua B, Lim YS, Hong J. Anomalous in-plane lattice thermal conductivity in an atomically thin two-dimensional α-GeTe layer. Phys Chem Chem Phys. 2020;22(21):12273–12280.
  • Yan Z, Kumar S. Phonon mode contributions to thermal conductivity of pristine and defective β-Ga2O3. Phys Chem Chem Phys. 2018;20(46):29236–29242.
  • Fthenakis ZG, Tománek D. Computational study of the thermal conductivity in defective carbon nanostructures. Phys Rev B. 2012;86(12):125418.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.