652
Views
8
CrossRef citations to date
0
Altmetric
Articles

Compatibility and high temperature performance of recycled polyethylene modified asphalt using molecular simulations

, , , ORCID Icon, &
Pages 1037-1049 | Received 06 Feb 2021, Accepted 11 Jun 2021, Published online: 30 Jun 2021

References

  • Winnie WYL, Yonathan S, Richard MB, et al. Evaluating scenarios toward zero plastic pollution. Science. 2020;369(6510):1455–1461. doi:10.1126/science.aba9475.
  • Roland G, Jenna RJ, Kara Lavender L. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):1–6. doi:10.1126/sciadv.1700782.
  • Caihua Y, Hu K, Qilin Y, et al. Analysis of the storage stability property of carbon nanotube/recycled polyethylene–modified asphalt using molecular dynamics simulations. Polymers. 2021;13:1–21. doi:10.3390/polym13101658.
  • Zhen L, Anand S, Rabindra KP, et al. Value–added application of waste PET based additives in bituminous mixtures containing high percentage of reclaimed asphalt pavement (RAP). J Clean Prod. 2018;196:615–625. doi:10.1016/j.jclepro.2018.06.119.
  • Kui H, Caihua Y, Qilin Y. Multi–scale enhancement mechanisms of graphene oxide on styrene– butadiene–styrene modified asphalt: an exploration from molecular dynamics simulations. Mater Design. 2021;208:1–13. doi:10.1016/j.matdes.2021.109901.
  • Sabzoi N, Muhammad J, Rebecca G, et al. Recycled plastic as bitumen modifier: the role of recycled linear low–density polyethylene in the modification of physical, chemical and rheological properties of bitumen. J Clean Prod. 2020;266:1–12. doi:10.1016/j.jclepro.2020.121988.
  • Zhenyu D, Changshan J, Jie Y. Low temperature performance characteristics of polyethylene modified asphalts – A review. Constr Build Mater. 2020;264:1–24. doi:10.1016/j.conbuildmat.2020.120704.
  • Rabindra KP, Anand S. Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives. Constr Build Mater. 2018;188:772–780. doi:10.3390/polym13101658.
  • Ming L, Xue X, Weiyu F, et al. Comparison of rheological properties and compatibility of asphalt modified with various polyethylene. Int J Pavement Eng. 2019;22(1):11–20. doi:10.1080/10298436.2019.1575968.
  • Ming L, Xue X, Weiyu F. Phase behavior and hot storage characteristics of asphalt modified with various polyethylene: experimental and numerical characterizations. Constr Build Mater. 2019;203:608–620. doi:10.1016/j.conbuildmat.2019.01.095.
  • Ruien Y, Changqing F, Pei L. Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite. Appl Clay Sci. 2015;104:1–7. doi:10.1016/j.clay.2014.11.033.
  • Kui H, Sen H, Zhuangzhuang L, et al. Determination of morphology characteristics of polymer–modified asphalt by a quantification parameters approach. Road Mater Pavement. 2018;20(6):1306–1321. doi:10.1080/14680629.2018.1443831.
  • Yong F, Caihua Y, Kui H. A study of the microscopic interaction mechanism of styrene–butadiene–styrene modified asphalt based on density functional theory. Mol Simulat. 2021: 1–12. doi:10.1080/08927022.2021.1876874.
  • Xue X, Zhanyong Y, Jingtao S, et al. Rheological properties, microstructure and aging resistance of asphalt modified with CNTs/PE composites. Constr Build Mater. 2020;262:1–11. doi:10.1016/j.conbuildmat.2020.120100.
  • Ruien Y, Xijing Z, Maorong Z. Investigation on the short–term aging–resistance of thermoplastic polyurethane–modified asphalt binders. Polymers. 2018;10(11):1–11. doi:10.3390/polym10111189.
  • Alaa HA, Hussain UB. Enhancement of permanent deformation resistance of modified asphalt concrete mixtures with nano–high density polyethylene. Constr Build Mater. 2020;236:1–11. doi:10.1016/j.conbuildmat.2019.117604.
  • Maria I, Arshad H, Afaq K, et al. Improving the aging resistance of asphalt by addition of polyethylene and sulphur. Civil Eng J. 2020;6(5):1017–1030. doi:10.28991/cej–2020–03091525.
  • Jielin P, Rafiqul AT. Investigation of asphalt aging behaviour due to oxidation using molecular dynamics simulation. Mol Sim. 2015;42(8):667–678. doi:10.1080/08927022.2015.1073851.
  • Guangji X, Hao W. Diffusion and interaction mechanism of rejuvenating agent with virgin and recycled asphalt binder: a molecular dynamics study. Mol Sim. 2018;44(17):1433–1443. doi:10.1080/08927022.2018.1515483.
  • Biao Y, Zhiwei L, Rujing F, et al. A DFT study on the adsorption of SO2 on Al x –C2N (x=1, 2) monolayer. Mol Sim. 2020;46(15):1147–1154. doi:10.1080/08927022.2020.1778172.
  • Xinxing Z, Xiao Z, Song X, et al. Evaluation of thermo–mechanical properties of graphene/carbon–nanotubes modified asphalt with molecular simulation. Mol Sim. 2017;43(4):312–319. doi:10.1080/08927022.2016.1274985.
  • Fucheng G, Jiupeng Z, Jianzhong P. Investigating the interaction behavior between asphalt binder and rubber in rubber asphalt by molecular dynamics simulation. Constr Build Mater. 2020;252:1–10. doi:10.1016/j.conbuildmat.2020.118956.
  • Fardin K, Rajesh K. Glass transition and molecular mobility in styrene–butadiene rubber modified asphalt. J Phys Chem B. 2015;119(44):14261–14269. doi:10.1021/acs.jpcb.5b06191.
  • Derek DL, Michael LG. Chemical compositions of improved model asphalt systems for molecular simulations. Fuel. 2014;115:347–356. doi:10.1016/j.fuel.2013.07.012.
  • Guangji X, Hao W. Molecular dynamics study of oxidative aging effect on asphalt binder properties. Fuel. 2017;188:1–10. doi:10.1016/j.fuel.2016.10.021.
  • Zhengwu L, Lingyun Y, Xianqiong T. Analysis of interfacial adhesion properties of nano–silica modified asphalt mixtures using molecular dynamics simulation. Constr Build Mater. 2020;255:1–17. doi:10.1016/j.conbuildmat.2020.119354.
  • Hancheng D, Zhuomin Z, Zhi Z. Effects of aggregate type and SBS copolymer on the interfacial heat transport ability of asphalt mixture using molecular dynamics simulation. Constr Build Mater. 2020;250:1–12. doi:10.1016/j.conbuildmat.2020.118922.
  • Jinzhou L, Bin Y, Qianzhe H. Molecular dynamics simulation of distribution and adhesion of asphalt components on steel slag. Constr Build Mater. 2020;255:1–12. doi:10.1016/j.conbuildmat.2020.119332.
  • Hui Y, Qingli D, Zhanping Y. Evaluation of contact angle between asphalt binders and aggregates using Molecular Dynamics (MD) method. Constr Build Mater. 2019;212:727–736. doi:10.1016/j.conbuildmat.2019.03.283.
  • Qing Z, Qicheng L, Peng L. Study on modification mechanism of nano–ZnO/polymerised styrene butadiene composite–modified asphalt using density functional theory. Road Mater Pavement. 2018;21(5):1426–1438. doi:10.1080/14680629.2018.1552888.
  • Daquan S, Tianban L, Xingyi Z, et al. Indices for self–healing performance assessments based on molecular dynamics simulation of asphalt binders. Comp Mater Sci. 2016;114:86–93. doi:10.1016/j.commatsci.2015.12.017.
  • Qing Z, Yaru L, Qicheng L. Preparation and modification mechanism analysis of graphene oxide modified asphalts. Constr Build Mater. 2020;238:1–9. doi:10.1016/j.conbuildmat.2019.117706.
  • Behnood A, Gharehveran MM. Morphology, rheology, and physical properties of polymer–modified asphalt binders. Eur Polym J. 2019;112:766–791. doi.org/10.1016/j.eurpolymj.2018.10.049.
  • Tian X, Yaping Q, Jianhui X. Viscoelastic phase separation and crystalline–to–amorphous phase transition in bitumen/SBS/PE blends. Polymer. 2018;155:129–135. doi.org/10.1016/j.polymer.2018.09.042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.