178
Views
1
CrossRef citations to date
0
Altmetric
Articles

Thermal conductivity calculations of binary liquid organic mixtures by molecular dynamics simulation and its interpretation of microscopic heat transfer mechanism

ORCID Icon, , &
Pages 1050-1058 | Received 17 Mar 2021, Accepted 11 Jun 2021, Published online: 05 Jul 2021

References

  • Bao H, Chen J, Gu X, et al. A review of simulation methods in micro/nanoscale heat conduction. Es Energy Environ. 2018;1:16–55.
  • Algaer EA, Müller-Plathe F. Molecular dynamics calculations of the thermal conductivity of molecular liquids, polymers, and carbon nanotubes. Soft Mater. 2012;10(1-3):42–80.
  • Vargaftik NB. Handbook of thermal conductivity of liquids and gases. Boca Raton: CRC Press; 1994.
  • Matsubara H, Kikugawa G, Bessho T, et al. Molecular dynamics study on the role of hydroxyl groups in heat conduction in liquid alcohols. Int J Heat Mass Tran. 2017;108:749–759.
  • Matsubara H, Kikugawa G, Bessho T, et al. Effects of molecular structure on microscopic heat transport in chain polymer liquids. J Chem Phys. 2015;142(16):164509-1–164509-10.
  • Torii D, Nakano T, Ohara T. Contribution of inter- and intramolecular energy transfers to heat conduction in liquids. J Chem Phys. 2008;128(4):044504-1–044504-8.
  • Fan Z, Pereira L FC, Wang H, et al. Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations. Phys Rev B. 2015;92(9):094301-1–094301-12.
  • Ohara T. Contribution of intermolecular energy transfer to heat conduction in a simple liquid. J Chem Phys. 1999;111(21):9667–9672.
  • Assael MJ, Antoniadis KD, Wakeham WA. Historical evolution of the transient Hot-wire technique. Int J Thermophys. 2010;31(6):1051–1072.
  • Lu H, Yang F, Liu W, et al. A robust model for estimating thermal conductivity of liquid alkyl halides. Sar Qsar Environ Res. 2020;31(2):73–85.
  • Lu H, Liu W, Yang F, et al. Thermal conductivity estimation of nitrogen-containing liquid organic compounds using QSPR methods from molecular structures. J Mol Struct. 2020;1219:128634-1–128634-6.
  • Liu W, Lu H, Cao C, et al. An improved Quantitative Structure Property Relationship model for predicting thermal conductivity of Liquid Aliphatic alcohols. J Chem Eng Data. 2018;63(12):4735–4740.
  • Rodenbush CM, Viswanath DS, Hsieh F. A group contribution method for the prediction of thermal conductivity of liquids and Its application to the prandtl number for vegetable oils. Ind Eng Chem Res. 1999;38(11):4513–4519.
  • Lu H, Liu W, Yang F, et al. Thermal conductivity estimation of diverse Liquid Aliphatic oxygen-containing organic compounds using the Quantitative structure–Property Relationship method. ACS Omega. 2020;5(15):8534–8542.
  • Kawagoe Y, Surblys D, Matsubara H, et al. Construction of polydisperse polymer model and investigation of heat conduction: A molecular dynamics study of linear and branched polyethylenimine. Polymer (Guildf). 2019;180:121721.
  • Kawagoe Y, Surblys D, Kikugawa G, et al. Molecular dynamics study on thermal energy transfer in bulk polyacrylic acid. Aip Adv. 2019;9(2):025302-1–025302-7.
  • Ohara T, Chia Yuan T, Torii D, et al. Heat conduction in chain polymer liquids: molecular dynamics study on the contributions of inter- and intramolecular energy transfer. J Chem Phys. 2011;135(3):034507-1–034507-7.
  • Shen H. Wrinkling and thermal conductivity of one graphene sheet under shear. Mol Simulat. 2015;41(4):231–236.
  • Senturk AE, Oktem AS, Konukman AES. Thermal conductivity and mechanical properties of graphene-like BC2, BC3 and B4C3. Mol Simulat. 2020;46(12):879–888.
  • Ravi P, Murad S. Thermal conductivity of mixtures of polyatomic fluids using nonequilibrium molecular dynamics. Mol Simulat. 1992;9(3):239–245.
  • Fernández GA, Vrabec J, Hasse H. Shear viscosity and thermal conductivity of quadrupolar real fluids from molecular simulation. Mol Simulat. 2005;31(11):787–793.
  • Song X, Lu L, Wei M, et al. Molecular dynamics simulations on the water flux in different two-dimension materials. Mol Simulat. 2020;46(9):689–698.
  • Fernández GA, Vrabec J, Hasse H. A molecular simulation study of shear and bulk viscosity and thermal conductivity of simple real fluids. Fluid Phase Equilibr. 2004;221(1):157–163.
  • Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys. 1997;106(14):6082–6085.
  • Fang Y, Kikugawa G, Matsubara H, et al. Molecular thermal energy transfer in binary mixture of simple liquids. Fluid Phase Equilibr. 2016;429:293–300.
  • Rossinsky E, Müller-Plathe F. Anisotropy of the thermal conductivity in a crystalline polymer: Reverse nonequilibrium molecular dynamics simulation of the δ phase of syndiotactic polystyrene. J Chem Phys. 2009;130(13):134905-1–134905-9.
  • Lussetti E, Terao T, Müller-Plathe F. Nonequilibrium molecular Dynamics Calculation of the Thermal Conductivity of Amorphous polyamide-6,6. J Phys Chem B. 2007;111(39):11516–11523.
  • Algaer E A, Alaghemandi M, Böhm M C, et al. Thermal Conductivity of Amorphous Polystyrene in Supercritical Carbon Dioxide Studied by Reverse Nonequilibrium Molecular Dynamics simulations. J Phys Chem A. 2009;113(43):11487–11494.
  • Guevara-Carrion G, Nieto-Draghi C, Vrabec J, et al. Prediction of transport properties by molecular simulation: methanol and ethanol and their mixture. J Phys Chem B. 2008;112(51):16664–16674.
  • Yang F, Lu H, Liu W, et al. Understanding the contributions of microscopic heat transfer to Thermal Conductivities of Liquid aldehydes and ketones by molecular dynamics simulation. J Chem Inf Model. 2020;60(6):3022–3029.
  • Liu W, Yang F, Jiao Y, et al. Exploring the effect of temperature on microscopic heat transfer of liquid organics by molecular dynamics simulations. J Mol Struct. 2021;1237:130383-1–130383-8.
  • Yang X, Duan C, Xu J, et al. A numerical study on the thermal conductivity of H2O/CO2/H2 mixtures in supercritical regions of water for coal supercritical water gasification system. Int J Heat Mass Tran. 2019;135:413–424.
  • Akilu S, Baheta AT, Kadirgama K, et al. Viscosity, electrical and thermal conductivities of ethylene and propylene glycol-based β-SiC nanofluids. J Mol Liq. 2019;284:780–792.
  • Simon JM, Dysthe DK, Fuchs AH, et al. Thermal diffusion in alkane binary mixtures - A molecular dynamics approach. Fluid Phase Equilibr. 1998;150-151:151–159.
  • Algaer EA, Alaghemandi M, Böhm MC, et al. Anisotropy of the thermal conductivity of stretched Amorphous Polystyrene in Supercritical Carbon Dioxide Studied by Reverse Nonequilibrium Molecular Dynamics simulations. J Phys Chem B. 2009;113(44):14596–14603.
  • Vogelsang R, Hoheisel C. Thermal conductivity of a binary-liquid mixture studied by molecular dynamics with use of Lennard-Jones potentials. Phys Rev A. 1987;35(8):3487–3491.
  • Schaink HM, Luo H, Hoheisel C. Molecular dynamics calculation of the transport coefficients of liquid benzene + cyclohexane mixtures using six-center lennard-Jones potentials. J Chem Phys. 1993;99(12):9912–9916.
  • Ogiwara K, Arai Y, Saito S. Thermal conductivities of liquids and their mixtures for Hydrocarbons and alcohols. J Chem Eng Jpn. 1985;18(3):273–277.
  • Ogiwara K, Arai Y, Saito S. Thermal Conductivities of Liquid Hydrocarbons and their binary mixtures. Ind Eng Chem Fundam. 1980;19(3):295–300.
  • Nguyen TD. GPU-accelerated Tersoff potentials for massively parallel molecular dynamics simulations. Comput Phys Commun. 2017;212:113–122.
  • Nguyen TD, Plimpton SJ. Accelerating dissipative particle dynamics simulations for soft matter systems. Comp Mater Sci. 2015;100:173–180.
  • Brown WM, Yamada M. Implementing molecular dynamics on hybrid high performance computers—three-body potentials. Comput Phys Commun. 2013;184(12):2785–2793.
  • Brown WM, Kohlmeyer A, Plimpton SJ, et al. Implementing Molecular Dynamics on Hybrid High Performance Computers – particle-particle particle-mesh. Comput Phys Commun. 2012;183(3):449–459.
  • Brown WM, Wang P, Plimpton SJ, et al. Implementing Molecular Dynamics on Hybrid High Performance Computers - short Range forces. Comput Phys Commun. 2011;182(4):898–911.
  • Plimpton S. Fast parallel algorithms for short-Range molecular dynamics. J Comput Phys. 1995;117(1):1–19.
  • Boone P, Babaei H, Wilmer C E. Heat flux for many-body interactions: corrections to LAMMPS. J Chem Theory Comput. 2019;15(10):5579–5587.
  • Wirnsberger P, Frenkel D, Dellago C. An enhanced version of the heat exchange algorithm with excellent energy conservation properties. J Chem Phys. 2015;143(12):124104-1–124104-8.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695–1697.
  • Sun Y, Chen L, Cui L, et al. Molecular dynamics simulation of cross-linked epoxy resin and its interaction energy with graphene under two typical force fields. Comp Mater Sci. 2018;143:240–247.
  • Zhu W, Wang X, Xiao J, et al. Molecular dynamics simulations of AP/HMX composite with a modified force field. J Hazard Mater. 2009;167(1):810–816.
  • Sun H, Mumby SJ, Maple JR, et al. An ab initio CFF93 All-atom force field for polycarbonates. J Am Chem Soc. 1994;116(7):2978–2987.
  • Feng B, Fan L, Zeng Y, et al. Atomistic insights into the effects of hydrogen bonds on the melting process and heat conduction of erythritol as a promising latent heat storage material. Int J Therm Sci. 2019;146:106103-1–106103-12.
  • Matsubara H, Kikugawa G, Bessho T, et al. Non-equilibrium molecular dynamics simulation as a method of calculating thermodynamic coefficients. Fluid Phase Equilibr. 2016;421:1–8.
  • Matsubara H, Kikugawa G, Bessho T, et al. Understanding the chain length dependence of thermal conductivity of liquid alcohols at 298 K on the basis of molecular-scale energy transfer. Fluid Phase Equilibr. 2017;441:24–32.
  • Matsubara H, Kikugawa G, Ishikiriyama M, et al. Microscopic picture of heat conduction in liquid ethylene glycol by molecular dynamics simulation: difference from the monohydric case. Int J Heat Mass Tran. 2018;121:1033–1038.
  • Assael MJ, Charitidou E, Karagiannidis L. The thermal conductivity of n-hexadecane+ ethanol and n-decane + butanol mixtures. Int J Thermophys. 1991;12(3):491–500.
  • Wada Y, Nagasaka Y, Nagashima A. Measurements and correlation of the thermal conductivity of liquid n-paraffin hydrocarbons and their binary and ternary mixtures. Int J Thermophys. 1985;6(3):251–265.
  • Baroncini C, Latini G, Pierpaoli P. Thermal conductivity of organic liquid binary mixtures: Measurements and prediction method. Int J Thermophys. 1984;5(4):387–401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.