149
Views
2
CrossRef citations to date
0
Altmetric
Articles

Single-molecule thermoelectric properties susceptibility to environment molecules

ORCID Icon
Pages 1059-1065 | Received 09 May 2021, Accepted 15 Jun 2021, Published online: 30 Jun 2021

References

  • Han H, Zhang Y, Wang N, et al. Functionalization mediates heat transport in graphene nanoflakes. Nat Commun. 2016;7:11281.
  • Yang J, Han X, Yuan P, et al. Effects of different electrodes and substituent groups on molecular switching. Theor Chem Acc. 2018;137(6):77.
  • French WR, Iacovella CR, Rungger I, et al. Atomistic simulations of highly conductive molecular transport junctions under realistic conditions. Nanoscale. 2013;5(9):3654–3659.
  • Ke S-H, Baranger HU, Yang W. Contact atomic structure and electron transport through molecules. J Chem Phys. 2005;122(7):074704.
  • Kaneko S, Montes E, Suzuki S, et al. Identifying the molecular adsorption site of a single molecule junction through combined Raman and conductance studies. Chem Sci. 2019;10:6261–6269.
  • Zotti LA, Kirchner T, Cuevas JC, et al. Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small. 2010;6(14):1529–1535.
  • Stadler R. Conformation dependence of charge transfer and level alignment in nitrobenzene junctions with pyridyl anchor groups. Phys Rev B. 2010;81(16):165429.
  • Mijbil ZY. Electronegativity, symmetry, and bond strength intrinsically control charge transport through five-membered single-molecule junction. Eur Phys J B. 2019;92(10):220.
  • Nakashima S, Takahashi Y, Kiguchi M. Effect of the environment on the electrical conductance of the single benzene-1,4-diamine molecule junction. Beilstein J Nanotechnol. 2011;2:755–759.
  • Venkataraman L, Klare JE, Nuckolls C, et al. Dependence of single-molecule junction conductance on molecular conformation. Nature. 2006;442:904.
  • Chen F, Hihath J, Huang Z, et al. Measurement of single-molecule conductance. Annu Rev Phys Chem. 2007;58:535–564.
  • Tao N. Measurement and control of single molecule conductance. J Mater Chem. 2005;15(32):3260–3263.
  • Wu S, González MT, Huber R, et al. Molecular junctions based on aromatic coupling. Nat Nanotechnol. 2008;3(9):569–574.
  • An J, Xue K, Xie W, et al. Effects of an oxygen environment on the electrical properties of a single CdS nanobelt device. Nanotechnology. 2011;22(13):135702.
  • Luka-Guth K, Hambsch S, Bloch A, et al. Role of solvents in the electronic transport properties of single-molecule junctions. Beilstein J Nanotechnol. 2016;7:1055–1067.
  • Choi B, Capozzi B, Ahn S, et al. Solvent-dependent conductance decay constants in single cluster junctions. Chem Sci. 2016;7(4):2701–2705.
  • French WR, Iacovella CR, Cummings PT. Large-scale atomistic simulations of environmental effects on the formation and properties of molecular junctions. ACS Nano. 2012;6(3):2779–2789.
  • Bilić A, Reimers JR, Hush NS. Adsorption of pyridine on the gold(111) surface:  implications for “alligator clips” for molecular wires. J Phys Chem B. 2002;106(26):6740–6747.
  • Quek SY, Venkataraman L, Choi HJ, et al. Amine−gold linked single-molecule circuits:  experiment and theory. Nano Lett. 2007;7(11):3477–3482.
  • Venkataraman L, Klare JE, Tam IW, et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 2006;6(3):458–462.
  • Quek SY, Kamenetska M, Steigerwald ML, et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nat Nanotechnol. 2009;4(4):230–234.
  • Mijbil ZY. Transmission of a single impurity system: a comprehensive pedagogical tutorial. Eur J Phys. 2019;40(4):045801.
  • Fatemi V, Kamenetska M, Neaton J, et al. Environmental control of single-molecule junction transport. Nano Lett. 2011;11(5):1988–1992.
  • Zotti LA, Bürkle M, Dappe YJ, et al. Electronic transport through single noble gas atoms. Phys Rev B. 2011;84(19):193404.
  • Lambert CJ. Basic concepts of quantum interference and electron transport in single-molecule electronics. Chem Soc Rev. 2015;44(4):875–888.
  • Osorio HM, Martín S, López MC, et al. Electrical characterization of single molecule and langmuir–blodgett monomolecular films of a pyridine-terminated oligo (phenylene-ethynylene) derivative. Beilstein J Nanotechnol. 2015;6(1):1145–1157.
  • Mijbil ZY, Al-Jobory AA. Tuning the length-dependent conductance of thiophene and furan’s derivatives via connectivity. J Electron Mater. 2020;49(12):7457–7463.
  • Kamenetska M, Quek SY, Whalley A, et al. Conductance and geometry of pyridine-linked single-molecule junctions. J. Am Chem Soc. 2010;132(19):6817–6821.
  • Seth C, Kaliginedi V, Suravarapu S, et al. Conductance in a bis-terpyridine based single molecular breadboard circuit. Chem Sci. 2017;8(2):1576–1591.
  • Schmidt V, Mensch PF, Karg SF, et al. Using the Seebeck coefficient to determine charge carrier concentration, mobility, and relaxation time in InAs nanowires. Appl Phys Lett. 2014;104(1):012113.
  • Cui L, Miao R, Jiang C, et al. Perspective: thermal and thermoelectric transport in molecular junctions. J Chem Phys. 2017;146(9):092201.
  • Al-Khaykanee MK, Ismael AK, Grace I, et al. Oscillating Seebeck coefficients in π-stacked molecular junctions. RSC Adv. 2018;8(44):24711–24715.
  • (Invited) Bi-thermoelectricity in Fullerene-based Molecular Junctions. ECS Meeting Abstracts. 2016.
  • Rincón-García L, Ismael AK, Evangeli C, et al. Molecular design and control of fullerene-based bi-thermoelectric materials. Nat Mater. 2016;15(3):289–293.
  • Algharagholy LAA, Pope T, Lambert CJ. Strain-induced bi-thermoelectricity in tapered carbon nanotubes. J Phys Condens Matter. 2018;30(10):105304.
  • Mijbil ZY. Quantum interference in monocyclic molecules: a novel and straightforward phase wave model. Karbala Int J Mod Sci. 2020;6(2):Article 10.
  • Lambert CJ. Quantum transport in nanostructures and molecules. Bristol: IOP Publishing Ltd; 2021.
  • Zotti LA, Bürkle M, Pauly F, et al. Heat dissipation and its relation to thermopower in single-molecule junctions. New J Phys. 2014;16(1):015004.
  • Cui L, Miao R, Wang K, et al. Peltier cooling in molecular junctions. Nat Nanotechnol. 2018;13(2):122–127.
  • Park S, Kang H, Yoon HJ. Structure–thermopower relationships in molecular thermoelectrics. J Mater Chem A. 2019;7(24):14419–14446.
  • Soler JM, Artacho E, Gale JD, et al. The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter. 2002;14(11):2745.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.
  • Ismael AK, Al-Jobory A, Grace I, et al. Discriminating single-molecule sensing by crown-ether-based molecular junctions. J Chem Phys. 2017;146(6):064704.
  • Al-Jobory AA, Mijbil ZY, Noori M. Tuning electrical conductance of molecular junctions via multipath Ru-based metal complex wire. Indian J Phys. 2020;94:1189–1194.
  • Al-Jobory AA, Mijbil ZY. Mach-Zehnder quantum interference rules in hydrocarbons with substituents. Submitted.
  • Sadeghi H, Sangtarash S, Lambert C. Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons. Beilstein J Nanotechnol. 2015;6:1176.
  • Koentopp M, Chang C, Burke K, et al. Density functional calculations of nanoscale conductance. J Phys Condens Matter. 2008;20(8):083203.
  • London AE, Chen H, Sabuj M, et al. A high-spin ground-state donor-acceptor conjugated polymer. Sci Adv. 2019;5(5):eaav2336.
  • Joo Y, Huang L, Eedugurala N, et al. Thermoelectric performance of an open-shell donor–acceptor conjugated polymer doped with a radical-containing small molecule. Macromolecules. 2018;51(10):3886–3894.
  • Bâldea I. Demonstrating why DFT-calculations for molecular transport in solvents need scissor corrections. Electrochem commun. 2013;36:19–21.
  • Godby RW, Schlüter M, Sham L. Self-energy operators and exchange-correlation potentials in semiconductors. Phys Rev B. 1988;37(17):10159.
  • Critchley K, Khanal BP, Górzny MŁ, et al. Near-bulk conductivity of gold nanowires as nanoscale interconnects and the role of atomically smooth interface. Adv Mater. 2010;22(21):2338–2342.
  • Mollenhauer D, Gaston N, Voloshina E, et al. Interaction of pyridine derivatives with a gold (111) surface as a model for adsorption to large nanoparticles. J Phys Chem C. 2013;117(9):4470–4479.
  • Ferrer J, Lambert CJ, García-Suárez VM, et al. GOLLUM: a next-generation simulation tool for electron, thermal and spin transport. New J Phys. 2014;16(9):093029.
  • Mijbil ZY. OLIFE: tight binding code for transmission coefficient calculation. J Phys Conf Ser. 2018;1003(1):012114.
  • Landauer R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev. 1957;1(3):223–231.
  • Finch C, Garcia-Suarez V, Lambert CJ. Giant thermopower and figure of merit in single-molecule devices. Phys Rev B. 2009;79(3):033405.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.