156
Views
3
CrossRef citations to date
0
Altmetric
Articles

Local structure in lithium chloride solution: a Monte-Carlo simulation study

ORCID Icon, , , &
Pages 1121-1134 | Received 08 Feb 2021, Accepted 09 Jul 2021, Published online: 25 Jul 2021

References

  • Krebs HA. Chemical composition of blood plasma and serum. Annu Rev Biochem. 1950;19(1):409–430. doi:10.1146/annurev.bi.19.070150.002205.
  • Koneshan S, Lynden-Bell RM, Rasaiah JC. Friction coefficients of ions in aqueous solution at 25 °C. J Am Chem Soc. 1998;120(46):12041–12050. doi:10.1021/ja981997x.
  • Hummer G, Soumpasis DM, Neumann M. Pair correlations in an NaCl-SPC water model: simulations versus extended RISM computations. Mol Phys. 1992;77(4):769–785. doi:10.1080/00268979200102751.
  • Lyubartsev AP, Laaksonen A. Concentration effects in aqueous NaCl solutions. A molecular dynamics simulation. J Phys Chem. 1996;100(40):16410–16418. doi:10.1021/jp961317 h.
  • Chialvo AA, Simonson JM. The structure of CaCl2 aqueous solutions over a wide range of concentration. interpretation of diffraction experiments via molecular simulation. J Chem Phys. 2003;119(15):8052–8061. doi:10.1063/1.1610443.
  • Bouazizi S, Nasr S. Local order in aqueous lithium chloride solutions as studied by X-ray scattering and molecular dynamics simulations. J Mol Struct. 2007;837(1–3):206–213. doi:10.1016/j.molstruc.2006.10.017.
  • Megyes T, Bakó I, Bálint S, et al. Ion pairing in aqueous calcium chloride solution: molecular dynamics simulation and diffraction studies. J Mol Liq. 2006;129(1–2):63–74. doi:10.1016/j.molliq.2006.08.013.
  • Vieira DS, Degrève L. Molecular simulation of a concentrated aqueous KCl solution. J Mol Struct THEOCHEM. 2002;580(1–3):127–135. doi:10.1016/S0166-1280(01)00607-8.
  • Llano-Restrepo M, Chapman WG. Monte Carlo simulation of the structural properties of concentrated aqueous alkali halide solutions at 25°C using a simple civilized model. J Chem Phys. 1994;100(11):8321–8339. doi:10.1063/1.466777.
  • Shen H, Hao T, Wen J, et al. Properties of pure water and sodium chloride solutions at high temperatures and pressures: a simulation study. Mol Simul. 2015;41(18):1488–1494. doi:10.1080/08927022.2014.992019.
  • Koneshan S, Rasaiah JC. Computer simulation studies of aqueous sodium chloride solutions at 298k and 683k. J Chem Phys. 2000;113:8125–8137.
  • Rjiba A, Jelassi J, Letaief N, et al. Structural and comparative study of water confined in a mesoporous bioglass by X-ray total scattering. Phys Chem Liq. 2021;59:564–574. doi:10.1080/00319104.2020.1757094.
  • Jelassi J, Grosz T, Bako I, et al. Structural studies of water in hydrophilic and hydrophobic mesoporous silicas: an X-ray and neutron diffraction study at 297 K. J Chem Phys. 2011;134(6):064509), doi:10.1063/1.3530584.
  • Smirnov P, Yamaguchi T, Kittaka S, et al. X-ray diffraction study of water confined in mesoporous MCM-41 materials over a temperature range of 223−298 K. J Phys Chem B. 2000;104(23):5498–5504. doi:10.1021/jp994326+.
  • Milischuk AA, Ladanyi BM. Structure and dynamics of water confined in silica nanopores. J Chem Phys. 2011;135(17):174709), doi:10.1063/1.3657408.
  • Rjiba A, Khoder H, Jelassi J, et al. Differential scanning calorimetry and NMR study of water confined in a mesoporous bioactive glass. Microporous Mesoporous Mater. 2021;110922; doi:10.1016/j.micromeso.2021.110922.
  • Gorbaty YE, Demianets YN. An X-ray study of the effect of pressure on the structure of liquid water. Mol Phys. 1985;55(3):571–588. doi:10.1080/00268978500101551.
  • Hribar B, Southall NT, Vlachy V, et al. How ions affect the structure of water. J Am Chem Soc. 2002;124(41):12302–12311. doi:10.1021/ja026014 h.
  • Mancinelli R, Botti A, Bruni F, et al. Perturbation of water structure due to monovalent ions in solution. Phys Chem Chem Phys. 2007;9(23):2959. doi:10.1039/b701855j.
  • Parthasarathy L, Vadnal RE, Parthasarathy R, et al. Biochemical and molecular properties of lithium-sensitive myo-inositol monophosphatase. Life Sci. 1994;54(16):1127–1142. doi:10.1016/0024-3205(94)00835-3.
  • Freeman MP, Freeman SA. Lithium: clinical considerations in internal medicine. Am J Med. 2006;119(6):478–481. doi:10.1016/j.amjmed.2005.11.003.
  • Nowak S, Winter M. The role of cations on the performance of lithium Ion batteries: a quantitative analytical approach. Acc Chem Res. 2018;51(2):265–272. doi:10.1021/acs.accounts.7b00523.
  • Tromp RH, Neilson GW, Soper AK. Water structure in concentrated lithium chloride solutions. J Chem Phys. 1992;96(11):8460–8469. doi:10.1063/1.462298.
  • Harsányi I, Pusztai L. On the structure of aqueous LiCl solutions. J Chem Phys. 2005;122(12):124512–124512. doi:10.1063/1.1877192.
  • Loeffler HH, Rode BM. The hydration structure of the lithium Ion. J Chem Phys. 2002;117(1):110–117. doi:10.1063/1.1480875.
  • Rempe SB, Pratt LR, Hummer G, et al. The hydration number of Li + in liquid water. J Am Chem Soc. 2000;122(5):966–967. doi:10.1021/ja9924750.
  • Harsányi I, Temleitner L, Beuneu B, et al. Neutron and X-ray diffraction measurements on highly concentrated aqueous LiCl solutions. J Mol Liq. 2012;165:94–100.
  • Pethes I. A comparison of classical interatomic potentials applied to highly concentrated aqueous lithium chloride solutions. J Mol Liq. 2017;242:845–858. doi:10.1016/j.molliq.2017.07.076.
  • Zhang Z, Duan Z. Lithium chloride ionic association in dilute aqueous solution: a constrained molecular dynamics study. Chem Phys. 2004;297(1–3):221–233. doi:10.1016/j.chemphys.2003.10.030.
  • Lyubartsev AP, Laasonen K, Laaksonen A. Hydration of Li+ Ion. An Ab initio molecular dynamics simulation. J Chem Phys. 2001;114(7):3120–3126. doi:10.1063/1.1342815.
  • Vogrin BFJ, Knapp PS, Flint WL, et al. NMR studies of aqueous electrolyte solutions. IV. Hydration numbers of strong electrolytes determined from temperature effects on proton shifts. J Chem Phys. 1971;54(1):178–181. doi:10.1063/1.1674590.
  • Singh MB, Dalvi VH, Gaikar VG. Investigations of clustering of ions and diffusivity in concentrated aqueous solutions of lithium chloride by molecular dynamic simulations. RSC Adv. 2015;5(20):15328–15337. doi:10.1039/C4RA15124 K.
  • Cassone G, Creazzo F, Giaquinta PV, et al. Ionic diffusion and proton transfer in aqueous solutions of alkali metal salts. Phys Chem Chem Phys. 2017;19(31):20420–20429. doi:10.1039/C7CP03663A.
  • Omta AW, Kropman MF, Woutersen S, et al. Influence of ions on the hydrogen-bond structure in liquid water. J Chem Phys. 2003;119(23):12457–12461. doi:10.1063/1.1623746.
  • Omta AW. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science. 2003;301(5631):347–349. doi:10.1126/science.1084801.
  • Mancinelli R, Botti A, Bruni F, et al. Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J Phys Chem B. 2007;111(48):13570–13577. doi:10.1021/jp075913v.
  • Gallo P, Corradini D, Rovere M. Ion hydration and structural properties of water in aqueous solutions at normal and supercooled conditions: a test of the structure making and breaking concept. Phys Chem Chem Phys. 2011;13(44):19814–19822. doi:10.1039/c1cp22166c.
  • Izadi S, Anandakrishnan R, Onufriev AV. Building water models: a different approach. J Phys Chem Lett. 2014;5(21):3863–3871. doi:10.1021/jz501780a.
  • Jensen KP, Jorgensen WL. Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions. J Chem Theory Comput. 2006;2(6):1499–1509. doi:10.1021/ct600252r.
  • Tanaka K, Tamamushi R. A physico-chemical study of concentrated aqueous solutions of lithium chloride. Z Für Naturforschung A. 1991;46(1–2):141–147. doi:10.1515/zna-1991-1-223.
  • Vercher E, Solsona S, Isabel Vázquez M, et al. Apparent molar volumes of lithium chloride in 1-propanol + water in the temperature range from 288.15 to 318.15 K. Fluid Phase Equilib. 2003;209(1):95–111. doi:10.1016/S0378-3812(03)00077-3.
  • Saitta AM, Strässle T, Rousse G, et al. High density amorphous ices: disordered water towards close packing. J Chem Phys. 2004;121(17):8430–8434. doi:10.1063/1.1804493.
  • Idrissi A, Gerard M, Damay P, et al. The effect of urea on the structure of water: a molecular dynamics simulation. J Phys Chem B. 2010;114(13):4731–4738. doi:10.1021/jp911939y.
  • Errington JR, Debenedetti PG. Relationship between structural order and the anomalies of liquid water. Nature. 2001;409(6818):318–321. doi:10.1038/35053024.
  • Okhulkov AV, Demianets YN, Gorbaty YE. X-ray scattering in liquid water at pressures of up to 7.7 kbar: test of a fluctuation model. J Chem Phys. 1994;100(2):1578–1588. doi:10.1063/1.466584.
  • Overduin SD, Patey GN. Understanding the structure factor and isothermal compressibility of ambient water in terms of local structural environments. J Phys Chem B. 2012;116(39):12014–12020. doi:10.1021/jp3075749.
  • Sedlmeier F, Horinek D, Netz RR. Spatial correlations of density and structural fluctuations in liquid water: a comparative simulation study. J Am Chem Soc. 2011;133(5):1391–1398. doi:10.1021/ja1064137.
  • Bandyopadhyay D, Mohan S, Ghosh SK, et al. Molecular dynamics simulation of aqueous urea solution: is urea a structure breaker? J Phys Chem B. 2014;118(40):11757–11768. doi:10.1021/jp505147u.
  • Bandyopadhyay D, Bhanja K, Mohan S, et al. Effects of concentration on like-charge pairing of guanidinium ions and on the structure of water: an all-atom molecular dynamics simulation study. J Phys Chem B. 2015;119(34):11262–11274. doi:10.1021/acs.jpcb.5b03064.
  • Bandyopadhyay D, Mohan S, Ghosh SK, et al. Correlation of structural order, anomalous density, and hydrogen bonding network of liquid water. J Phys Chem B. 2013;117(29):8831–8843. doi:10.1021/jp404478y.
  • Narten AH, Vaslow F, Levy HA. Diffraction pattern and structure of aqueous lithium chloride solutions. J Chem Phys. 1973;58(11):5017–5023. doi:10.1063/1.1679089.
  • Newsome JR, Neilson GW, Enderby JE. Lithium ions in aqueous solution. J Phys C Solid State Phys. 1980;13(32):L923–L926. doi:10.1088/0022-3719/13/32/001.
  • Yamaguchi T, Yamagami M, Ohzono H, et al. Structure of Ionic hydration in non-ambient conditions. Phys B Condens Matter. 1995;213–214:480–482. doi:10.1016/0921-4526(95)00186-D.
  • Rudolph W, Brooker MH, Pye CC. Hydration of Lithium Ion in Aqueous Solutions. J. Phys Chem. 1995;99:3793–3797.
  • Rodgers MT, Armentrout PB. Collision-induced dissociation measurements on Li + (H 2 O) n, n = 1−6: the first direct measurement of the Li + −OH 2 bond energy. J Phys Chem A. 1997;101(7):1238–1249. doi:10.1021/jp962170x.
  • Soper AK, Weckström K. Ion solvation and water structure in potassium halide aqueous solutions. Biophys Chem. 2006;124(3):180–191. doi:10.1016/j.bpc.2006.04.009.
  • Frank HS, Wen W-Y. Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss Faraday Soc. 1957;24:133–140. doi:10.1039/df9572400133.
  • Ohtaki H, Radnai T. Structure and dynamics of hydrated ions. Chem Rev. 1993;93(3):1157–1204. doi:10.1021/cr00019a014.
  • Spångberg D, Hermansson K. Effective three-body potentials for Li+(Aq) and Mg2+(Aq). J Chem Phys. 2003;119(14):7263–7281. doi:10.1063/1.1604372.
  • Tóth G. Ab Initio pair potential parameter set for the interaction of a rigid and a flexible water model and the complete series of the halides and alkali cations. J Chem Phys. 1996;105(13):5518–5524. doi:10.1063/1.472392.
  • Impey RW, Madden PA, McDonald IR. Hydration and mobility of ions in solution. J Phys Chem. 1983;87(25):5071–5083. doi:10.1021/j150643a008.
  • Chialvo AA, Simonson JM. Ion association in Aqueous LiCl solutions at high concentration: predicted results via molecular simulation. J Chem Phys. 2006;124(15):154509), doi:10.1063/1.2186641.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.