240
Views
4
CrossRef citations to date
0
Altmetric
Articles

First principle study on the mechanical response of ZrC and ZrN at high-pressure conditions: anisotropy perspective

, , ORCID Icon &
Pages 1135-1148 | Received 04 Mar 2021, Accepted 12 Jul 2021, Published online: 27 Jul 2021

References

  • Harrison R, Lee W. Processing and properties of ZrC, ZrN and ZrCN ceramics: a review. Adv Appl Ceram. 2016;115(5):294–307.
  • Ul-Hamid A. Microstructure, properties and applications of Zr-carbide, Zr-nitride and Zr-carbonitride coatings-A review. Mater Adv. 2020;1:1012–1037. DOI:10.1039/D0MA00233J.
  • Maibam J. Investigation of electronic band structure of transition metal carbides and nitrides using density functional theory [Ph.D. thesis]. Assam University; 2013.
  • Saha B, et al. Electronic structure, phonons, and thermal properties of ScN, ZrN, and HfN: A first-principles study. J Appl Phys. 2010;107(3):033715.
  • Zhu J, et al. Thermodynamic properties of cubic ZrC under high pressure from first-principles calculations. Sci China Ser G Phys Mech Astron. 2009;52(7):1039–1042.
  • Charbonnier F, et al. Enhanced field emission from carbide-coated field emitters, and device applications. Ultramicroscopy. 1999;79(1-4):73–82.
  • Bobzin K, Brögelmann T. Minimizing frictional losses in crankshaft bearings of automobile powertrain by diamond-like carbon coatings under elasto-hydrodynamic lubrication. Surf Coat Technol. 2016;290:100–109.
  • Floroian L, et al. Titanium implants’ surface functionalization by pulsed laser deposition of TiN, ZrC and ZrN hard films. Appl Surf Sci. 2017;417:175–182.
  • Fu B, Gao L. Synthesis of nanocrystalline zirconium nitride powders by reduction–nitridation of zirconium oxide. J Am Ceram Soc. 2004;87(4):696–698.
  • Sasaki M, et al. Properties of carbon films with a dose of titanium or zirconium prepared by magnetron sputtering. Surf Coat Technol. 2005;196(1-3):236–240.
  • Kieffer R, Ettmayer P. Recent advances in the knowledge and applications of transition metal nitrides. High Temperatures-High Pressures: Thermophysical Properties: Fundamentals and Applications. 1974;6(3):253–260.
  • Duckworth R, Harper R, Jeynes C. Backscattering analysis of ZrN alloys. Nucl Instrum Methods Phys Res Sect B. 1986;15(1-6):272–274.
  • Reyna ALP, et al. Metal ion release barrier function and biotribological evaluation of a zirconium nitride multilayer coated knee implant under highly demanding activities wear simulation. J Biomech. 2018;79:88–96.
  • Reyna ALP, et al. Metal ion release barrier function and biotribological evaluation of a zirconium nitride multilayer coated knee implant under highly demanding activities wear simulation. J Biomech. 2018;79:88–96.
  • Meng J-p, et al. Influence of ion–atom arrival ratio on structure and optical properties of ZrNx films. Mater Lett. 2016;164:291–293.
  • Maksimov E, et al. Effect of high pressure on the phonon spectra and superconductivity in ZrN and HfN. Supercond Sci Technol. 2009;22(7):075004.
  • Tan L, et al. Stability of zirconium carbide under high pressure and high temperature. J Phys Chem C. 2019;123(15):10051–10056.
  • Li X, et al. Investigation on properties of ceramic coatings of ZrN. Vacuum. 1992;43(5-7):653–656.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868.
  • Clark SJ, et al. First principles methods using CASTEP. Z Kristallogr - Cryst Mater. 2005;220(5-6):567–570.
  • Hao A, et al. First-principles investigations on electronic, elastic and thermodynamic properties of ZrC and ZrN under high pressure. Mater Chem Phys. 2011;129(1-2):99–104.
  • Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47(1):558.
  • Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B. 1994;49(20):14251.
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169.
  • Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15–50.
  • Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B. 1992;45(23):13244.
  • Kim J, Kang S. First principles investigation of temperature and pressure dependent elastic properties of ZrC and ZrN using debye–Gruneisen theory. J Alloys Compd. 2012;540:94–99.
  • Kim J, Suh YJ. Temperature-and pressure-dependent elastic properties, thermal expansion ratios, and minimum thermal conductivities of ZrC, ZrN, and Zr (C0. 5N0. 5). Ceram Int. 2017;43(15):12968–12974.
  • Lee MH. PhD Thesis. Cambridge University; 1996.
  • Perdew JP, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B. 1981;23(10):5048.
  • Fu H, Peng W, Gao T. Structural and elastic properties of ZrC under high pressure. Mater Chem Phys. 2009;115(2-3):789–794.
  • Hartwigsen C, Gœdecker S, Hutter J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys Rev B. 1998;58(7):3641.
  • Gonze X, et al. First-principles computation of material properties: the ABINIT software project. Comput Mater Sci. 2002;25(3):478–492.
  • Gautam GS, Kumar KH. Elastic, thermochemical and thermophysical properties of rock salt-type transition metal carbides and nitrides: a first principles study. J Alloys Compd. 2014;587:380–386.
  • Srivastava A, Chauhan M, Singh R. High-pressure phase transitions in transition metal carbides XC (X = Ti, Zr, Hf, V, Nb, Ta): a first-principle study. Phase Transit. 2011;84(1):58–66.
  • Singh A, Aynyas M, Sanyal SP. High pressure behavior and structural properties of transition metal carbides. Phase Transit. 2009;82(8):576–586.
  • Xiao-Yong Y, et al. Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-principles calculations. Chin Phys B. 2015;24(11):116301.
  • Jing Q, Wu C-Y, Gong H-R. Phase transition, thermodynamic and elastic properties of ZrC. Trans Nonferrous Met Soc China. 2018;28(12):2520–2527.
  • Varshney D, Shriya S. Elastic, mechanical and thermodynamic properties at high pressures and temperatures of transition metal monocarbides. Int J Refract Met Hard Mater . 2013;41:375–401.
  • Chung D, Buessem W. The voigt-reuss-Hill approximation and elastic moduli of polycrystalline MgO, CaF2, β-ZnS, ZnSe, and CdTe. J Appl Phys. 1967;38(6):2535–2540.
  • Andersen OK. Linear methods in band theory. Phys Rev B. 1975;12(8):3060.
  • Schwarz K, Blaha P. Solid state calculations using WIEN2k. Comput Mater Sci. 2003;28(2):259–273.
  • Blaha P, et al.. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Techn Universitat. 2019: 287.
  • Kempter C, Fries R. Crystallographic data. 189. zirconium carbide. Anal Chem. 1960;32(4):570–570.
  • Stampfl C, et al. Electronic structure and physical properties of early transition metal mononitrides: density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Phys Rev B. 2001;63(15):155106.
  • Jamal M, et al. IRelast package. J Alloys Compd. 2018;735:569–579.
  • Birch F. Elasticity and constitution of the earth's interior. J Geophys Res. 1952;57(2):227–286.
  • Katsura T, Tange Y. A simple derivation of the birch–Murnaghan Equations of state (EOSs) and Comparison with EOSs derived from other definitions of finite strain. Minerals. 2019;9(12):745.
  • Hirsekorn S. Elastic properties of polycrystals: a review. Textures Microstruct. 1990;12(1-3):1–14.
  • Liu X, Fu J. First principle study on electronic structure, elastic properties and debye temperature of pure and doped KCaF3. Vacuum. 2020;179:109504.
  • Wang C, et al. First-principles study of the mechanical and thermodynamic properties of Al4W, Al5W and Al12W under pressure. Vacuum. 2019;169:108844.
  • Voigt W. Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928). Vol. 962. Leipzig: Google Scholar; 1908.
  • Kneer G. Über die berechnung der elastizitätsmoduln vielkristalliner aggregate mit textur. Phys Status Solidi B. 1965;9(3):825–838.
  • Mouhat F, Coudert F-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B. 2014;90(22):224104.
  • Peivaste I, et al. Comparative study on mechanical properties of three different SiC polytypes (3C, 4H and 6H) under high pressure: first-principle calculations. Vacuum. 2018;154:37–43.
  • Hadi M, et al. First-principles prediction of mechanical and bonding characteristics of new T2 superconductor Ta5GeB2. Phys Status Solidi B. 2016;253(10):2020–2026.
  • Chen L, et al. Microstructure and elastic constants of AlTiVMoNb refractory high-entropy alloy coating on Ti6Al4V by laser cladding. Mater Res Express. 2019;6(11):116571.
  • Frantsevich IJRB. Handbook on elastic constants and moduli of elasticity for metals and nonmetals. Kiev: Naukova Dumka; 1982.
  • Chen X-Q, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics. 2011;19(9):1275–1281.
  • Zeng X, et al. The ideal strengths of superconducting MgCNi3 and CdCNi3. J Supercond Novel Magn. 2018;31(8):2355–2361.
  • Brookes C, Green P. Anisotropy in the scratch hardness of cubic crystals. Proc R Soc London Ser A. 1979;368(1732):37–57.
  • Ranganathan SI, Ostoja-Starzewski M. Universal elastic anisotropy index. Phys Rev Lett. 2008;101(5):055504.
  • Kube CM. Elastic anisotropy of crystals. AIP Adv. 2016;6(9):095209.
  • Chen K, et al. The properties of elasticity, thermology, and anisotropy in Pd-based alloys. J Mater Sci Chem Eng. 2017;5(3):17–34.
  • Garai J. Physics behind the Debye temperature. arXiv preprint physics/0703001, 2007.
  • Isaev EI, et al. Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study. J Appl Phys. 2007;101(12):123519.
  • Zaoui A, Bouhafs B, Ruterana P. First-principles calculations on the electronic structure of TiCxN1−x, ZrxNb1−xC and HfCxN1−x alloys. Mater Chem Phys. 2005;91(1):108–115.
  • Kim J, Kang S. Elastic and thermo-physical properties of TiC, TiN, and their intermediate composition alloys using ab initio calculations. J Alloys Compd. 2012;528:20–27.
  • Ivashchenko V, Turchi P, Shevchenko V. First-principles study of elastic and stability properties of ZrC–ZrN and ZrC–TiC alloys. J Phys Condens Matter. 2009;21(39):395503.
  • Srivastava A, Diwan BD. Structural and elastic properties of ZrN and HfN: ab initio study. Can J Phys. 2014;92(9):1058–1061.
  • Cheng D, Wang S, Ye H. First-principles calculations of the elastic properties of ZrC and ZrN. J Alloys Compd. 2004;377(1–2):221–224.
  • Chang R, Graham LJ. Low-temperature elastic properties of ZrC and TiC. J Appl Phys. 1966;37(10):3778–3783.
  • Chen X-J, et al. Hard superconducting nitrides. Proc Natl Acad Sci USA. 2005;102(9):3198–3201.
  • Blaschke DN. Averaging of elastic constants for polycrystals. J Appl Phys. 2017;122(14):145110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.