386
Views
8
CrossRef citations to date
0
Altmetric
Articles

An in silico molecular dynamics simulation study on the inhibitors of SARS-CoV-2 proteases (3CLpro and PLpro) to combat COVID-19

ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1168-1184 | Received 31 Mar 2021, Accepted 15 Jul 2021, Published online: 26 Jul 2021

References

  • Hui DS, El Azhar E, Madani TA, et al. The continuing 2019-NCoV epidemic threat of novel coronaviruses to global health — the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264–266. DOI:10.1016/j.ijid.2020.01.009.
  • WHO (OMS). COVID-19 weekly epidemiological update. 2021 May 25. Available from: file:///C:/Users/HP%20Lap/Downloads/20210525_Weekly_Epi_Update_41.pdf.
  • ul Qamar MT, Alqahtani SM, Alamri MA, et al. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020;10(4):313–319. DOI:10.1016/j.jpha.2020.03.009.
  • Kong L, Shaw N, Yan L, et al. Structural view and substrate specificity of papain-like protease from avian infectious bronchitis virus. J Biol Chem. 2015;290(11):7160–7168. DOI:10.1074/jbc.M114.628636.
  • Harcourt BH, Jukneliene D, Kanjanahaluethai A, et al. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol. 2004;78(24):13600–13612. DOI:10.1128/JVI.78.24.13600-13612.2004.
  • Xu X, Dang Z, Zhang L, et al. Potential inhibitor for 2019-novel coronaviruses in drug development. Cancer Transl Med [Internet]. 2020 [cited 2020 Sep 14];6:17–20. Available from: http://www.cancertm.com/article.asp?issn=2395-3977;year=2020;volume=6;issue=1;spage=17;epage=20;aulast=Xu.
  • Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: their roles in pathogenesis. J Microbiol Immunol Infect. 2020;54:159–163. DOI:10.1016/j.jmii.2020.03.022.
  • Lim KP, Ng LFP, Liu DX. Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus avian infectious bronchitis virus and characterization of the cleavage products. J Virol. 2000;74(4):1674–1685. DOI:10.1128/JVI.74.4.1674-1685.2000.
  • Shin D, Mukherjee R, Grewe D, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020:1–6. DOI:10.1038/s41586-020-2601-5.
  • Bosken YK, Cholko T, Lou Y-C, et al. Insights into dynamics of inhibitor and ubiquitin-like protein binding in SARS-CoV-2 papain-like protease. Front Mol Biosci. 2020;7. DOI:10.3389/fmolb.2020.00174.
  • Shin D, Mukherjee R, Grewe D, et al. Inhibition of papain-like protease PLpro blocks SARS-CoV-2 spread and promotes anti-viral immunity. 2020. DOI:10.21203/rs.3.rs-27134/v1.
  • Freitas BT, Durie IA, Murray J, et al. Characterization and noncovalent inhibition of the deubiquitinase and DeISGylase activity of SARS-CoV-2 papain-like protease. ACS Infect Dis. 2020;6(8):2099–2109. DOI:10.1021/acsinfecdis.0c00168.
  • Báez-Santos YM, Mielech AM, Deng X, et al. Catalytic function and substrate specificity of the papain-like protease domain of Nsp3 from the middle east respiratory syndrome coronavirus. J Virol. 2014;88(21):12511–12527. DOI:10.1128/JVI.01294-14.
  • Kandeel M, Abdelrahman AHM, Oh-Hashi K, et al. Repurposing of FDA-approved antivirals, antibiotics, anthelmintics, antioxidants, and cell protectives against SARS-CoV-2 papain-like protease. J Biomol Struct Dyn. 2020. DOI:10.1080/07391102.2020.1784291.
  • Ibrahim Mahmoud AA, Abdelrahman AHM, Mohamed-Elamir FH. In-silico drug repurposing and molecular dynamics puzzled out potential SARS-CoV-2 main protease inhibitors. J Biomol Struct Dyn. 2020. DOI:10.1080/07391102.2020.1791958.
  • Ibrahim Mahmoud AA, Abdelrahman AHM, Khaled SA, et al. The in silico evaluation of prospective anti–COVID–19 drug candidates as potential SARS–CoV–2 main protease inhibitors. Protein J. 2021;40:269–309. DOI:10.1007/s10930-020-09945-6.
  • Bryan-Marrugo OL, Ramos-Jiménez J, Barrera-Saldaña H, et al. History and progress of antiviral drugs: from acyclovir to direct-acting antiviral agents (DAAs) for hepatitis C. Med Univ. 2015;17(68):165–174. DOI:10.1016/j.rmu.2015.05.003.
  • Rut W, Lv Z, Zmudzinski M, et al. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: a framework for anti-COVID-19 drug design. Sci Adv. 2020;6(42):eabd4596. DOI:10.1126/sciadv.abd4596.
  • Owen CD, Lukacik P, Strain-Damerell CM, et al. SARS-CoV-2 main protease with unliganded active site [Internet]. Available from: https://www.wwpdb.org/pdb?id=pdb_00006yb7.
  • Morris GM, Huey R, Lindstrom W, et al. Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791. DOI:10.1002/jcc.21256.
  • Fox MJF, Trucks GW, Schlegel HB, et al. Gaussian 16, revision C.01. Wallingford (CT): Gaussian, Inc.; 2016.
  • Schmid N, Eichenberger AP, Choutko A, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J. 2011;40(7):843. DOI:10.1007/s00249-011-0700-9.
  • Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91(1):43–56. DOI:10.1016/0010-4655(95)00042-E.
  • Corbett MSP, Mark AE, Poger D. Do all X-ray structures of protein-ligand complexes represent functional states? EPOR, a case study. Biophys J [Internet]. 2017 [cited 2021 Jun 16];112:595–604. Available from: https://linkinghub.elsevier.com/retrieve/pii/S000634951730036X.
  • Schüttelkopf AW, van Aalten DMF. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 8):1355–1363. DOI:10.1107/S0907444904011679.
  • Breneman CM, Wiberg KB. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem. 1990;11(3):361–373. DOI:10.1002/jcc.540110311.
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Interaction models for water in relation to protein hydration. In: Pullman B, editor. Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry held in Jerusalem, Israel, April 13–16, 1981. Dordrecht: Springer; 1981. p. 331–342. DOI:10.1007/978-94-015-7658-1_21.
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1):014101. DOI:10.1063/1.2408420.
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52(12):7182–7190. DOI:10.1063/1.328693.
  • Bera K, Rani P, Kishor G, et al. Structural elucidation of transmembrane domain zero (TMD0) of EcdL: a multidrug resistance-associated protein (MRP) family of ATP-binding cassette transporter protein revealed by atomistic simulation. J Biomol Struct Dyn. 2018;36(11):2938–2950. DOI:10.1080/07391102.2017.1372311.
  • Mahapatra MK, Bera K, Singh DV, et al. In silico modelling and molecular dynamics simulation studies of thiazolidine based PTP1B inhibitors. J Biomol Struct Dyn. 2018;36(5):1195–1211. DOI:10.1080/07391102.2017.1317026.
  • Hess B, Bekker H, Berendsen HJC, et al. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18(12):1463–1472. DOI:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H.
  • Amadei A, Linssen ABM, Berendsen HJC. Essential dynamics of proteins. Proteins Struct Funct Bioinform. 1993;17(4):412–425. DOI:10.1002/prot.340170408.
  • Teeter MM, Case DA. Harmonic and quasiharmonic descriptions of crambin. J Phys Chem. 1990;94(21):8091–8097. DOI:10.1021/j100384a021.
  • Srinivasan J, Cheatham TE, Cieplak P, et al. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate−DNA helices. J Am Chem Soc. 1998;120(37):9401–9409. DOI:10.1021/ja981844+.
  • Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33(12):889–897. DOI:10.1021/ar000033j.
  • Ren J, Yuan X, Li J, et al. Assessing the performance of the G_mmpbsa tools to simulate the inhibition of oseltamivir to influenza virus neuraminidase by molecular mechanics Poisson–Boltzmann surface area methods. J Chin Chem Soc. 2020;67(1):46–53. DOI:10.1002/jccs.201900148.
  • Kumari R, Kumar R, Lynn A. G_mmpbsa – a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54(7):1951–1962. DOI:10.1021/ci500020m.
  • Ratia KM, Xiong R, Thatcher GR. SARS-CoV-2 papain-like protease (PLpro) bound to inhibitor XR8-69. 2021. DOI:10.2210/pdb7LLZ/pdb.
  • Su HX, Zhao WF, Xie H, et al. SARS-CoV-2 3CL protease (3CLpro) in complex with myricetin. 2020. DOI:10.2210/pdb7DPP/pdb.
  • Tan Q, Duan L, Ma Y, et al. Is oseltamivir suitable for fighting against COVID-19: in silico assessment, in vitro and retrospective study. Bioorg Chem. 2020;104:104257. DOI:10.1016/j.bioorg.2020.104257.
  • Shiwani R, Meghali P, Kalyan SG. Docking studies with multiple molecular targets associated with SARSCoV-2 for drug repurposing. Coronaviruses. 2021;2. DOI:10.2174/2666796701999201216111613.
  • Mody V, Ho J, Wills S, et al. Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents. Commun Biol. 2021;4:93. DOI:10.1038/s42003-020-01577-x.
  • de Lima EAW, Pereira FA, de Castro AA, et al. Flexibility in the molecular design of acetylcholinesterase reactivators: probing representative conformations by chemometric techniques and docking/QM calculations. LDDD [Internet]. 2016 [cited 2021 Jun 16];13:360–371. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1570-1808&volume=13&issue=5&spage=360.
  • Gonçalves MA, Santos LS, Prata DM, et al. Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: application to thermal and solvent effects of MRI probes. Theor Chem Acc [Internet]. 2017 [cited 2021 Jun 16];136:15. Available from: http://link.springer.com/10.1007/s00214-016-2037-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.