104
Views
3
CrossRef citations to date
0
Altmetric
Articles

Structural dynamics of Rhipicephalus microplus serpin-3

ORCID Icon, , , , , & show all
Pages 1209-1216 | Received 19 Mar 2021, Accepted 20 Jul 2021, Published online: 04 Aug 2021

References

  • Ortega-Sanchez R, Camacho-Nuez M, Castaneda-Ortiz EJ, et al. Vaccine efficacy of recombinant BmVDAC on Rhipicephalus microplus fed on Babesia bigemina-infected and uninfected cattle. Vaccine. 2020;38:3618–3625.
  • Low VL, Tay ST, Kho KL, et al. Molecular characterisation of the tick Rhipicephalus microplus in Malaysia: new insights into the cryptic diversity and distinct genetic assemblages throughout the world. Parasit Vectors. 2015;8:341.
  • Baffi MA, de Souza GR, de Sousa CS, et al. Esterase enzymes involved in pyrethroid and organophosphate resistance in a Brazilian population of Riphicephallus (Boophilus) microplus (Acari. Ixodidae). Mol Biochem Parasitol. 2008;160:70–73.
  • Rosario-Cruz R, Almazan C, Miller RJ, et al. Genetic basis and impact of tick acaricide resistance. Front Biosci (Landmark Ed). 2009;14:2657–2665.
  • De Meneghi D, Stachurski F, Adakal H. Experiences in tick control by acaricide in the traditional cattle sector in Zambia and Burkina Faso: possible environmental and public health implications. Front Public Health. 2016;4:239.
  • Opdebeeck JP. Vaccines against blood-sucking arthropods. Vet Parasitol. 1994;54:205–222.
  • de la Fuente J, Rodriguez M, Montero C, et al. Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavac. Genet Anal. 1999;15:143–148.
  • Kay BH, Kemp DH. Vaccines against arthropods. Am J Trop Med Hyg. 1994;50:87–96.
  • Rodriguez-Valle M, Xu T, Kurscheid S, et al. Rhipicephalus microplus serine protease inhibitor family: annotation, expression and functional characterisation assessment. Parasite Vector. 2015;8:1–9.
  • Jittapalapong S, Jansawan W, Barriga OO, et al. Reduced incidence of Babesia bigemina infection in cattle immunized against the cattle tick, Boophilus microplus. Ann N Y Acad Sci. 2004;1026:312–318.
  • Jittapalapong S, Jansawan W, Gingkaew A, et al. Protection of dairy cows immunized with tick tissues against natural Boophilus microplus infestations in Thailand. Ann N Y Acad Sci. 2004;1026:289–297.
  • Kaewhom P, Sirinarumitr T, Jantakru S, et al. Molecular cloning of serine proteinase inhibitors (SERPINS) gene from salivary gland of cattle tick (Boophilus microplus) in Thailand. Kasetsart J. 2007;41:74–80.
  • Jittapalapong S, Phichitrasilp T, Chanphao H, et al. Immunization with tick salivary gland extracts impact on salivary gland ultrastructure in Rhipicephalus (Boophilus) microplus collected from immunized naturally infested cattle. Ann N Y Acad Sci. 2008;1149:200–204.
  • Kaewhom P, Stich RW, Needham GR, et al. Molecular analysis of Calreticulin expressed in salivary glands of Rhipicephalus (Boophilus) microplus indigenous to Thailand. Ann N Y Acad Sci. 2008;1149:53–57.
  • Kaewhom P, Sirinarumitr T, Stich RW, et al. Molecular cloning and sequencing analysis of Bm91 (angiotensin converting enzymes) cDNA from salivary glands of Thai Cattle ticks, Boophilus microplus. Infect Genet Evol. 2008;8:S31–SS2.
  • Kaewhom P, Sirinarumitr T, Chantakru S, et al. Humoral antibody responses of rabbits immunized with anti-tick vaccine using SERPIN recombinant protein. Kasetsart J. 2009;43:69–76.
  • Jittapalapong S, Kaewhom P, Kengradomkij C, et al. Humoral immune response of dairy cattle immunized with rBm95 (KU-VAC1) derived from Thai Rhipicephalus microplus. Transbound Emerg Dis. 2010;57:91–95.
  • Jittapalapong S, Kaewhom P, Pumhom P, et al. Immunization of rabbits with recombinant serine protease inhibitor reduces the performance of adult female Rhipicephalus microplus. Transbound Emerg Dis. 2010;57:103–106.
  • Gettins PGW. Serpin structure, mechanism, and function. Chem Rev. 2002;102:4751–4803.
  • Irving JA, Pike RN, Lesk AM, et al. Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res. 2000;10:1845–1864.
  • Ryu SE, Choi HJ, Kwon KS, et al. The native strains in the hydrophobic core and flexible reactive loop of a serine protease inhibitor: crystal structure of an uncleaved alpha1-antitrypsin at 2.7 A. Structure. 1996;4:1181–1192.
  • Gooptu B, Lomas DA. Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Annu Rev Biochem. 2009;78:147–176.
  • Huntington JA. Serpin structure, function and dysfunction. J Thromb Haemost. 2011;9(Suppl 1):26–34.
  • Marijanovic EM, Fodor J, Riley BT, et al. Reactive centre loop dynamics and serpin specificity. Sci Rep. 2019;9:3870.
  • Tirloni L, Kim TK, Coutinho ML, et al. The putative role of Rhipicephalus microplus salivary serpins in the tick-host relationship. Insect Biochem Molec. 2016;71:12–28.
  • Mulenga A, Khumthong R, Chalaire KC. Ixodes scapularis tick serine proteinase inhibitor (serpin) gene family; annotation and transcriptional analysis. Bmc Genomics. 2009;10:217–225.
  • Rodriguez-Valle M, Vance M, Moolhuijzen PM, et al. Differential recognition by tick-resistant cattle of the recombinantly expressed Rhipicephalus microplus serine protease inhibitor-3 (RMS-3). Ticks Tick Borne Dis. 2012;3:159–169.
  • Tirloni L, Seixas A, Mulenga A, et al. A family of serine protease inhibitors (serpins) in the cattle tick Rhipicephalus (Boophilus) microplus. Exp Parasitol. 2014;137:25–34.
  • Mulenga A, Tsuda A, Onuma M, et al. Four serine proteinase inhibitors (serpin) from the brown ear tick, Rhiphicephalus appendiculatus; cDNA cloning and preliminary characterization. Insect Biochem Mol Biol. 2003;33:267–276.
  • Chmelar J, Oliveira CJ, Rezacova P, et al. A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood. 2011;117:736–744.
  • Baicharoen A, Vijayan R, Pongprayoon P. Structural insights into betaine aldehyde dehydrogenase (BADH2) from Oryza sativa explored by modeling and simulations. Sci Rep. 2018;8:12892.
  • Awang T, Wiriyatanakorn N, Saparpakorn P, et al. Understanding the effects of two bound glucose in Sudlow site I on structure and function of human serum albumin: theoretical studies. J Biomol Struct Dyn. 2017;35:781–790.
  • Noto R, Santangelo MG, Levantino M, et al. Functional and dysfunctional conformers of human neuroserpin characterized by optical spectroscopies and molecular dynamics. Biochim Biophys Acta. 2015;1854:110–117.
  • Andersen OJ, Risor MW, Poulsen EC, et al. Reactive center loop insertion in alpha-1-antitrypsin captured by accelerated molecular dynamics simulation. Biochemistry. 2017;56:634–646.
  • Noto R, Randazzo L, Raccosta S, et al. The stability and activity of human neuroserpin are modulated by a salt bridge that stabilises the reactive centre loop. Sci Rep. 2015;5:1–10.
  • Niramitranon J, Pongprayoon P. Exploring the binding modes of cordycepin to human adenosine deaminase 1 (ADA1) compared to adenosine and 2′-deoxyadenosine. J Mol Model. 2020;26:29.
  • Ketrat S, Japrung D, Pongprayoon P. Exploring how structural and dynamic properties of bovine and canine serum albumins differ from human serum albumin. J Mol Graph Model. 2020;98:107601.
  • Cazzolli G, Wang F, Beccara SA, et al. Serpin latency transition at atomic resolution. P Natl Acad Sci USA. 2014;111:15414–15419.
  • Wang F, Orioli S, Ianeselli A, et al. All-Atom simulations reveal how single-point mutations promote serpin misfolding. Biophys J. 2018;114:2083–2094.
  • Petersen M, Madsen JB, Jorgensen TJD, et al. Conformational preludes to the latency transition in PAI-1 as determined by atomistic computer simulations and hydrogen/deuterium-exchange mass spectrometry. Sci Rep. 2017;7:6636–6649.
  • Pongprayoon P, Niramitranon J, Kaewhom P, et al. Dynamic and structural insights into tick serpin from Ixodes ricinus. J Biomol Struct Dyn. 2019;38:1–8.
  • Eswar N, Webb B, Marti-Renom MA, et al. Comparative protein structure modeling using modeller. Curr Protoc Bioinformatics. 2006, Chapter 5, Unit 5 6.
  • Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:W252–W258.
  • Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model. 2001;7:306–317.
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10092.
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690.
  • Humphrey W, Dalke A, Schulten K. VMD – visual molecular dynamics. J Mol Graph. 1996;14:33–38.
  • Huntington JA, Pannu NS, Hazes B, et al. A 2.6 A structure of a serpin polymer and implications for conformational disease. J Mol Biol. 1999;293:449–455.
  • Ellisdon AM, Zhang Q, Henstridge MA, et al. High resolution structure of cleaved serpin 42 Da from Drosophila melanogaster. BMC Struct Biol. 2014;14:14.
  • Ricagno S, Caccia S, Sorrentino G, et al. Human neuroserpin: structure and time-dependent inhibition. J Mol Biol. 2009;388:109–121.
  • Simonovic M, Gettins PGW, Volz K. Crystal structure of viral serpin crmA provides insights into its mechanism of cysteine proteinase inhibition. Protein Sci. 2000;9:1423–1427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.