128
Views
0
CrossRef citations to date
0
Altmetric
Articles

Analysis of the thermal rectification in silicon structure with triangular holes

&
Pages 1234-1240 | Received 04 Jan 2021, Accepted 31 Jul 2021, Published online: 14 Aug 2021

References

  • Roberts NA, Walker DG. A review of thermal rectification observations and models in solid materials. Int J Therm Sci. 2011;50(5):648–662.
  • Cheh J, Zhao H. Thermal rectification in asymmetric U-shaped graphene flakes. J Stat Mech: Theory Exp. 2012;2012:P06011.
  • Wu G, Li B. Thermal rectification in carbon nanotube intramolecular junctions: molecular dynamics calculations. Phys Rev B. 2007;76:085424.
  • Starr C. The copper oxide rectifier. Physics. 1936;7(1):15–19.
  • Liang Q, Wei Y. Molecular dynamics study on the thermal conductivity and thermal rectification in graphene with geometric variations of doped boron. Phys B Condens Matter. 2014;437:36–40.
  • Arora A, Hori T, Shiga T, et al. Thermal rectification in restructured graphene with locally modulated temperature dependence of thermal conductivity. Phys Rev B. 2017;96(16):165419.
  • Alaghemandi M, Leroy F, Müller-Plathe F, et al. Thermal rectification in nanosized model systems: a molecular dynamics approach. Phys Rev B. 2010;81(12):125410.
  • Gordiz K, Allaei SV, Kowsary F. Thermal rectification in multi-walled carbon nanotubes: a molecular dynamics study. Appl Phys Lett. 2011;99(25):251901–251901.
  • Dettori R, Melis C, Rurali R, et al. Thermal rectification in silicon by a graded distribution of defects. J Appl Phys. 2016;119(21):184301.
  • Ni X, Zhang G, Li B. Thermal conductivity and thermal rectification in unzipped carbon nanotubes. J Phys: Condens Matter. 2011;23(21):215301.
  • Zhang Z, Chen Y, Xie Y, et al. Transition of thermal rectification in silicon nanocones. Appl Therm Eng. 2016;102:1075–1080.
  • Kuo David MT, Chang YC. Thermoelectric and thermal rectification properties of quantum dot junctions. Phys Rev B. 2010;81(20):205321.
  • Sadat H, Le Dez V. Thermal rectification in a bilayer wall: coupled radiation and conduction heat transfer. Appl Therm Eng. 2016;107:1248–1252.
  • Chen J, Hua X, Zhang X. Two-dimensional numerical simulation of thermo-electric coupling model in semiconductor bridge ignition system. Int J Heat Mass Transf. 2017;113:195–202.
  • Chen J, Zhang X. Non-Fourier effects on the temperature time-dependence of a silicon igniter. IEEE Electron Device Lett. 2019;40(6):854–857.
  • Garcia-Garcia KI, Alvarez-Quintana J. Thermal rectification assisted by lattice transitions. Int J Therm Sci. 2014;81:76–83.
  • Yuan K, Sun M, Wang Z, et al. Tunable thermal rectification in silicon-functionalized graphene nanoribbons by molecular dynamics simulation. Int J Therm Sci. 2015;98:24–31.
  • Criado-Sancho M, Alvarez FX, Jou D. Thermal rectification in inhomogeneous nanoporous Si devices. J Appl Phys. 2013;114(5):1045.
  • Ju SH, Liang XG. Thermal rectification and phonon scattering in asymmetric silicon nanoribbons. J Appl Phys. 2012;112(2):648.
  • Ju SH, Liang XG, Wang S. Investigation of interfacial thermal resistance of bi-layer nanofilms by nonequilibrium molecular dynamics. J Phys D: Appl Phys. 2010;43(8):085407.
  • Wang S, Liang XG. Investigation of thermal rectification in bi-layer nanofilm by molecular dynamics. Int J Therm Sci. 2011;50(5):680–685.
  • Liang XG, Sun L, Shi B. Molecular dynamics simulation of the thermal conductivity of nanotube. Int Heat Transfer Conf. 2002;12:567–572.
  • Feng Y, Liang XG. Thermal rectification of silicene nanosheets With triangular cavities by molecular dynamics simulations. J Heat Transfer: Trans ASME. 2017;139:052402.
  • Ju SH, Liang XG. Thermal rectification and phonon scattering in silicon nanofilm with triangle hole. Acta Phys Sin. 2013;62(2):026101.
  • Ju SH, Liang XG. Thermal rectification and phonon scattering in silicon nanofilm with cone cavity. J Appl Phys. 2012;112:054312.
  • Hu J, Ruan X, Chen Y. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett. 2009;9(7):2730–2735.
  • Yang P, Li X, Zhao Y, et al. Effect of triangular vacancy defect on thermal conductivity and thermal rectification in graphene nanoribbons. Phys Lett A. 2013;377(34–36):2141–2146.
  • Liu L, Huang M. Thermal conductivity modeling of micro- and nanoporous silicon. Int J Therm Sci. 2010;49(9):1547–1554.
  • Liu Q, Luo H, Wang L L, et al. Tuning the thermal conductivity of silicon carbide by twin boundary: a molecular dynamics study. J Phys D: Appl Phys. 2017;50(6):065108.
  • Hu M, Keblinski P, Schelling PK. Kapitza conductance of silicon–amorphous polyethylene interfaces by molecular dynamics simulations. Phys Rev B. 2009;79(10):104305.
  • Barisik M, Beskok A. Temperature dependence of thermal resistance at the water/silicon interface. Int J Therm Sci. 2014;77:47–54.
  • Jiang JW, Yang N, Wang BS, et al. Modulation of thermal conductivity in kinked silicon nanowires: phonon interchanging and pinching effects. Nano Lett. 2013;13(4):1670–1674.
  • Jiang JW, Park HS, Rabczuk T. Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. J Appl Phys. 2013;114(6):064307.
  • Feng X. Molecular dynamics simulation of thermal conductivity of nanoscale thin silicon films. Microscale Thermophys Eng. 2003;7(2):153–161.
  • da Cruz CA, Termentzidi K, Chantrenne P, et al. Molecular dynamics simulations for the prediction of thermal conductivity of bulk silicon and silicon nanowires: influence of interatomic potentials and boundary conditions. J Appl Phys. 2011;110(3):34309.
  • Liu Q, Jiang P, Xiang H. Molecular dynamics study of the thermal conductivity of nanoscale argon films. Mol Simul. 2006;32(8):645–649.
  • Wang Z, Feng T, Ruan X. Thermal conductivity and spectral phonon properties of freestanding and supported silicene. J Appl Phys. 2015;117(8):084317.
  • Wang Z, Li Z. Lattice dynamics analysis of thermal conductivity in silicon nanoscale film. Appl Therm Eng. 2006;26(17):2063–2066.
  • Jeng MS, Yang R, Song D, et al. Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation. J Heat Transfer. 2008;130(4):042410.
  • Shomali Z, Pedar B, Ghazanfarian J, et al. Monte-Carlo parallel simulation of phonon transport for 3D silicon nano-devices. Int J Therm Sci. 2017;114:139–154.
  • Hua YC, Cao BY. Cross-plane heat conduction in nanoporous silicon thin films by phonon Boltzmann transport equation and Monte Carlo simulations. Appl Therm Eng. 2017;111:1401–1408.
  • Chen J, Zhang X. Nanoscale size effect and phonon properties of silicon material through simple spectral energy density analysis based on molecular dynamics. J Phys: Condens Matter. 2019;31:425701.
  • Thomas JA, Turney JE, Iutzi RM, et al. Predicting phonon dispersion relations and lifetimes from the spectral energy density. Phys Rev B. 2010;81:081411(R).
  • MüllerPlathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys. 1997;106:6082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.