311
Views
2
CrossRef citations to date
0
Altmetric
Articles

Highly selective carbon capture by novel graphene-carbon nanotube hybrids

, , &
Pages 1326-1334 | Received 25 May 2021, Accepted 09 Aug 2021, Published online: 31 Aug 2021

References

  • D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chem. Int Ed. 2010;49:6058–6082.
  • York R. Do alternative energy sources displace fossil fuels? Nat Clim Change. 2012;2:441–443.
  • Leung DYC, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev. 2014;39:426–443.
  • Dinda S. Development of solid adsorbent for carbon dioxide capture from flue gas. Sep Purif Technol. 2013;109:64–71.
  • Spigarelli BP, Kawatra SK. Opportunities and challenges in carbon dioxide capture. J CO2 Util. 2013;1:69–87.
  • Mondal MK, Balsora HK, Varshney P. Progress and trends in CO2 capture/separation technologies: a review. Energy. 2012;46:431–441.
  • Yu C-H, Huang C-H, Tan C-S. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 2012;12:745–769.
  • Lee S-Y, Park S-J. A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem. 2015;23:1–11.
  • Samanta A, Zhao A, Shimizu GKH, et al. Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res. 2012;51:1438–1463.
  • Wanjari PP, Sangwai AV, Ashbaugh HS. Confinement induced conformational changes in n-alkanes sequestered within a narrow carbon nanotube. Phys Chem Chem Phys. 2012;14:2702–2709.
  • Velpuri SVV, Gade HM, Wanjari PP. Encapsulation driven conformational changes in n-alkanes inside a hydrogen-bonded supramolecular cavitand assembly. Chem Phys. 2019;521:100–107.
  • Gade HM, Velpuri SVV, Wanjari PP. Conformational rearrangements in n-alkanes encapsulated within capsular self-assembly of capped carbon nanotubes. Chem Phys. 2019;517:198–207.
  • Gade HM, Wanjari PP, Velpuri SVV. Water-mediated curvature change in graphene by single-walled carbon nanotubes. Phys Chem Chem Phys. 2018;20:22359–22367.
  • Wang J, Huang L, Yang R, et al. Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ Sci. 2014;7:3478–3518.
  • Pramoda K, Kumar R, Rao CNR. Graphene / single-walled carbon nanotube composites generated by covalent cross-linking. Chem – Asian J. 2015;10:2147–2152.
  • Zhu Y, Li L, Zhang C, et al. A seamless three-dimensional carbon nanotube graphene hybrid material. Nat Commun. 2012;3:1225.
  • Dong X, Li B, Wei A, et al. One-step growth of graphene–carbon nanotube hybrid materials by chemical vapor deposition. Carbon N Y. 2011;49:2944–2949.
  • Al-Saleh MH. Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synth Met. 2015;209:41–46.
  • Ghazinejad M, Guo S, Paul RK, et al. Synthesis of graphene-CNT hybrid nanostructures. MRS Online Proc. Libr. Arch. 2011;1344.
  • Chowdhury S, Balasubramanian R. Three-dimensional graphene-based porous adsorbents for postcombustion CO2 capture. Ind Eng Chem Res. 2016;55:7906–7916.
  • Balasubramanian R, Chowdhury S. Recent advances and progress in the development of graphene-based adsorbents for CO2 capture. J Mater Chem A. 2015;3:21968–21989.
  • Gadipelli S, Guo ZX. Graphene-based materials: synthesis and gas sorption, storage and separation. Prog Mater Sci. 2015;69:1–60.
  • Chowdhury S, Balasubramanian R. Holey graphene frameworks for highly selective post-combustion carbon capture. Sci Rep. 2016;6:21537.
  • Jin Y, Hawkins SC, Huynh CP, et al. Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture. Energy Environ Sci. 2013;6:2591–2596.
  • Lei Guang-Ping XH, Liu C. Molecular simulation of adsorption and separation performances for CO2/CH4 mixtures in graphene/nanotube hybrid structures. Acta Phys-Chim Sin. 2015;31:660.
  • Hsiao J-W, Huang C-C, Fang T-H. Adsorption of H₂, CO, CO₂, N₂, O₂ and CH₄ on pillared graphene. J Nanosci Nanotechnol. 2018;18:39–43.
  • Liu L, Bhatia SK. Molecular simulation of CO2 adsorption in the presence of water in single-walled carbon nanotubes. J Phys Chem C. 2013;117:13479–13491.
  • Lithoxoos GP, et al. Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: a combined experimental and Monte Carlo molecular simulation study. J Supercrit Fluids. 2010;55:510–523.
  • Rahimi M, Babu DJ, Singh JK, et al. Double-walled carbon nanotube array for CO2 and SO2 adsorption. J Chem Phys. 2015;143:124701.
  • Rahimi M, Singh JK, Babu DJ, et al. Understanding carbon dioxide adsorption in carbon nanotube arrays: molecular simulation and adsorption measurements. J Phys Chem C. 2013;117:13492–13501.
  • Ban S, Huang C. Molecular simulation of CO2/N2 separation using vertically-aligned carbon nanotube membranes. J Membr Sci. 2012;417–418:113–118.
  • Dasgupta T, Punnathanam SN, Ayappa KG. Effect of functional groups on separating carbon dioxide from CO2/N2 gas mixtures using edge functionalized graphene nanoribbons. Chem Eng Sci. 2015;121:279–291.
  • Spoel DVD, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701–1718.
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–38.
  • Imani Yengejeh S, Kazemi SA, Öchsner A. Introduction. In: Imani Yengejeh S, Kazemi SA, Öchsner A, editors. A primer on the geometry of carbon nanotubes and their modifications. Cham: Springer International Publishing, Springer; 2015. p. 1–2.
  • Martínez L, Andrade R, Birgin EG, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009;30:2157–2164.
  • Wang J, Wolf RM, Caldwell JW, et al. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–1174.
  • Horn HW, Swope WC, Pitera JW, et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys. 2004;120:9665–9678.
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10092.
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593.
  • Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 1984;52:255–268.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–1697.
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52:7182–7190.
  • Chaban V. Should carbon nanotubes be degasified before filling? Chem Phys Lett. 2010;500:35–40.
  • Chaban V. Filling carbon nanotubes with liquid acetonitrile. Chem Phys Lett. 2010;496:50–55.
  • Chaban VV, Prezhdo OV. Nanoscale carbon greatly enhances mobility of a highly viscous ionic liquid. ACS Nano. 2014;8:8190–8197.
  • Ohba T, Chaban VV. A highly viscous imidazolium ionic liquid inside carbon nanotubes. J Phys Chem B. 2014;118:6234–6240.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.