129
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effect of heat treatment on the diffusion intermixing and structure of the Cu thin film on Si (111) substrate: a molecular dynamics simulation study

, ORCID Icon, , , , & show all
Pages 1381-1390 | Received 21 Jun 2021, Accepted 22 Aug 2021, Published online: 14 Sep 2021

References

  • Murarka SP. Multilevel interconnections for ULSI and GSI era. Mater Sci Eng: R: Rep. 1997;19:87–151.
  • Murarka SP, Gutmann RJ, Kaloyeros AE, et al. Advanced multilayer metallization schemes with copper as interconnection metal. Thin Solid Films. 1993;236:257–266.
  • Vook RW. Electrical control of surface electromigration damage. Thin Solid Films. 1997;305:286–291.
  • Le M-T, Sohn Y-U, Lim J-W, et al. Effect of sputtering power on the nucleation and growth of Cu films deposited by magnetron sputtering. Mater Trans. 2010;51:116–120.
  • Siker AK, Kumar A, Shukla P, et al. Effect of multistep annealing on mechanical and surface properties of electroplated Cu thin films. J Electron Mater. 2003;32:1028–1033.
  • Shukla P, Sikder AK, Zantye PB, et al. Effect of annealing on the structural, mechanical and tribological properties of electroplated Cu thin films. Mater Res Soc Symp Proc. 2004;182:F3.16.1–F3.16.7.
  • Du S, Li Y. Effect of annealing on microstructure and mechanical properties of magnetron sputtered Cu thin films. Adv Mater Sci Eng. 2015: 1–8. doi:https://doi.org/10.1155/2015/969580
  • Liu CS, Chen LJ. Interfacial reactions of ultrahigh-vacuum-deposited Cu thin films on atomically cleaned (111)Si. I. phase formation and interface structure. J Appl Phys. 1993;74:5501–5506.
  • Chigoya JE, Satoh T, Ohmi T. Thin film reaction and interface structure of Cu on (111)Si. Acta Metall, Mater. 1993;41:229–234.
  • Chen LJ, Liang JM, Liu CS, et al. High-resolution transmission electron microscopy investigation of interfaces in metal-silicon systems. Ultramicroscopy. 1994;54:156–165.
  • Demczyk BG, Naik FL, Auner G, et al. Growth of Cu films on hydrogen terminated Si(100) and Si(111) surfaces. J Appl Phys. 1994;75:1956–1961.
  • Chromik RR, Neils WK, Cotts EJ. Thermodynamic and kinetic study of solid state reactions in the Cu-Si system. J Appl Phys. 1999;86:4273–4281.
  • Sommadossi S, Litynska L, Zieba P, et al. Transmission electron microscopy investigation of the microstructure and chemistry of Si/Cu/In/Cu/Si interconnections. Mater Chem Phys. 2003;81:566–568.
  • Chen LJ, Liu CS, Lai JB. Interfacial reactions of ultrahigh-vacuum-deposited Cu thin films on Si, Ge and on epitaxial Si–Ge layers on Si and Ge. Mater Sci Semicond Process. 2004;7:143–156.
  • Solberg K. The crystal structure of η-Cu3 Si precipitates in silicon. Acta Crystallogr A. 1978;34:684–698.
  • Wang SQ. Barriers against copper diffusion into silicon and drift through silicon dioxide. MRS Bull. 1994;19:30–40.
  • Takeyama M, Kagomi S, Noya A, et al. Application of amorphous Cu–Zr binary alloy as a diffusion barrier in Cu/Si contact systems. J Appl Phys. 1996;80:569–573.
  • Fang JS, Hsu TP, Chen GS. Crystallization and failure behavior of Ta-Ni nanostructured/amorphous diffusion barriers for copper metallization. J Electron Mater. 2004;33:1176–1181.
  • Fang JS, Chang HL, Chen GS, et al. Crystallization and failure behaviors of Ta-Co nanostructured/amorphous diffusion barriers for copper metallization. Rev Adv Mater Sci. 2003;5:510–513.
  • Lin CT, Lin KL. Preparation of Cu1−xTax films and the material interaction in the Si/Cu1−xTax/Cu structure. Mater Chem Phys. 2003;82(2):306–315.
  • Li C, Hsieh JH, Tang ZZ. Study on the amorphous Ta–Zr films as diffusion barrier in Cu metallization. J Vac Sci Technol A: Vac Surf Films. 2008;26:980–984.
  • Chepkasov IV, Baidyshev VS, Tsura VA. Molecular dynamic simulation of melting copper-silicon nanoparticles. J Phys: Conf Ser. 2018;1015:032023.
  • Gong H, Lu W, Wang L, et al. The effect of deposition velocity and cluster size on thin film growth by Cu cluster deposition. Comput Mater Sci. 2012;65:230–234.
  • Gong H, Li G, Zhang S, et al. Atomistic study of the copper cluster deposition on Si(001) and Si(111) surface. Mater Sci Forum. 2016;850:287–298.
  • Zhang J, Liu C, Shu Y, et al. Growth and properties of Cu thin film deposited on Si(001) substrate: A molecular dynamics simulation study. Appl Surf Sci. 2012;261:690–696.
  • Zhang J, Liu C, Fan J. Comparison of Cu thin films deposited on Si substrates with different surfaces and temperatures. Appl Surf Sci. 2013;276:417–423.
  • https://lammps.sandia.gov/
  • Jelinek B, Groh S, Horstemeyer MF, et al. Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys. Physical Review B. 2012;85:245102.
  • Rapaport DC. The Art of molecular dynamics simulation. 2nd edition. Cambridge: Cambridge University Press; 2004.
  • Adachi M, Schick M, Brillo J, et al. Surface tension and density measurement of liquid Si–Cu binary alloys. J Mater Sci. 2010;45:2002–2008.
  • Mes-adi H, Lachtioui Y, Saadouni K, et al. Morphology and surface properties of Cu thin film on Si (001). Thin Solid Films. 2020;698:137853.
  • Mudry S, Shtablavyi I. The structure of the Cu3 Si chemical compound in molten state. J Phys Stud. 2005;9:130–134.
  • Mudry S, Shtablavyi I. The influence of doping with tin on the structure of Cu0.70Si0.30 eutectic melt. J Non Cryst Solids. 2006;352:4287–4291.
  • Mudry S, Shtablavyi I. Influence of Al on the structure of liquid Cu0.70Si0.30 eutectic alloy. Phys Chem Liq. 2005;43:5–12.
  • Feliziani S, Mudry S, Shtablavyi I. The cluster structure of liquid (Cu0.70Si0.30)1-xPbx alloys. J Phys: Conf Ser. 2008;98:012005.
  • Mattern N, Schüpp B, Bähtz C. Crystal structure and phase transformation of Cu3Si. HASYLAB Annual Report. 2001; Part 1. http://hasyweb.desy.de/science/annual_reports/2001_report/part1/contrib/44/4839.pdf.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.