221
Views
3
CrossRef citations to date
0
Altmetric
Articles

Where is the hydrodynamic limit?

Pages 1391-1401 | Received 16 Mar 2021, Accepted 24 Aug 2021, Published online: 11 Sep 2021

References

  • Batchelor GK. An introduction to fluid dynamics. Cambridge: Cambridge University Press; 1967.
  • Landau L and Lifshitz E. Fluid mechanics. 2nd ed. Amsterdam: Elsevier; 1987.
  • Lautrup B. Physics of continuous matter. Bristol: Institute of Physics Publishing; 2005.
  • Landau L and Lifshitz E. Statistical physics. 3rd ed. OXford: Pergmon Press; 1980.
  • de Zárate J and Sengers J. Hydrodynamic fluctuations. Amsterdam: Elsevier; 2006.
  • Onsager L. Reciprocal relations in irreversible processes. I.. Phys Rev. 37:1931;405–426.
  • de Groot SR and Mazur P. Non-equilibrium thermodynamics. New York: Dover Publications; 1984.
  • Cosserat E and Cosserat F. Sur la théorie de l'élasticité. Premier mémoire. Ann Toulouse. 10:1896;1–116.
  • Bonthuis JD, Horinek D and Bocquet L, et al. Electrohydraulic power conversion in planar nanochannels. Phys Rev Lett. 103:2009;144503.
  • Hansen JS, Dyre JD and Daivis PJ, et al. Nanoflow hydrodynamics. Phys Rev E. 84:2011;036311.
  • Navier CLMH. Memoire sur les lois du mouvement des fluids. Memoires de l'Academic Royale des Sciences de l'Institut de France. 6:1823;389.
  • Bocquet L and Barrat J-L. Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys Rev E. 49:1994;3079–3092.
  • Hansen J, Todd B and Daivis P. Prediction of fluid velocity slip at solid surfaces. Phys Rev E. 84:2011;016313.
  • Hansen JS, Daivis PJ and Travis KP, et al. Parameterization of the nonlocal viscosity kernel for an atomic fluid. Phys Rev E. 76:2007;041121.
  • Todd BD, Hansen JS and Daivis P. Nonlocal shear stress for homogeneous fluids. Phys Rev Lett. 100:2008;195901.
  • de Schepper IM, Cohen EGD and Bruin C, et al. Hydrodynamic time correlation functions for a Lennard-Jones fluid. Phys Rev A. 38:1988;271–287.
  • Bryk T, Mryglod I and Scopigno T, et al. Collective excitations in supercritical fluids: analytical and molecular dynamics study of “positive” and “negative” dispersion. J Chem Phys. 133:2010;024502.
  • Bryk T, Mryglod I and Ruocco G. Non-hydrodynamic modes in viscoelastic behaviour of simple fluids. Phil Mag. 100:2020;2568–2581.
  • Hansen JP and McDonald IR. Theory simple liquids. Amsterdam: Academic Press; 2006.
  • Hilbert D. Mathematical problems. Bull Am Math Soc. 37:2000;407–436.
  • McQuarrie DA. Statistical mechanics. New York (NY): Harper and Row; 1976.
  • Bardos C, Golse F and Levermore D. Fluid dynamic limits of kinetic equations. I. Formal derivations. J Stat Phys. 63:1991;323–344.
  • Bodensteiner T, Morkel C and Gläser W, et al. Collective dynamics in liquid cesium near the melting point. Phys Rev A. 45:1992;5709–5720.
  • Boon J and Yip S. Molecular hydrodynamics. New York: Dover Publication; 1991.
  • Koplik J, Banavar J and Willemsen J. Molecular dynamics of fluid flow at solid surfaces. Phys Fluid A. 1:1989;781–794.
  • Travis KP, Todd BD and Evans DJ. Departure from Navier-Stokes hydrodynamics in confined liquids. Phys Rev E. 55:1997;4288–4295.
  • Travis KP, Todd BD and Evans DJ. Poiseuille flow of molecular fluids. Phys A. 240:1997;315–327.
  • Alley WE and Alder BJ. Generalized transport coefficients for hard spheres. Phys Rev A. 27:1983;3158–3173.
  • Hansen J, Dyre J and Daivis P, et al. Continuum nanofluidics. Langmuir. 31:2015;13275–13289.
  • Phan-Thien N. Understanding viscoelasticity: an introduction to rheology. Springer Verlag; Berlin: 2002.
  • Frenkel J. Kinetic theory of liquids. Dover: Dover Publications; 1955.
  • Yang C, Dove MT and Brazhkin VV, et al. Emergence and evolution of the k gap in spectra of liquid and supercritical states. Phys Rev Lett. 118:2017;215502.
  • Bryk T, Mryglod I and Ruocco G, et al. Comment on “emergence and evolution of the k gap in spectra of liquid and supercritical states. Phys Rev Lett. 120:2018;219601.
  • Bocquet L and Charlaix E. Nanofluidics, from bulk to interfaces. Chem Soc Rev. 39:2010;1073–1095.
  • Hansen J. https://github.com/jesperschmidthansen/seplib
  • Bailey NP, Ingebrigtsen TS and Hansen JS, et al. RUMD: a general purpose molecular dynamics package optimized to utilize GPU hardware down to a few thousand particles. SciPost Phys.. 3:2017;038.
  • Allinger N. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc. 99:1977;8127.
  • Martin MG and Siepmann JI. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B. 102:1998;2569–2577.
  • Weiner S, Kollman P and Case D, et al. A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc. 106:1984;765.
  • Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 52:1984;255.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 31:1985;1695.
  • Allen MP and Tildesley DJ. Computer simulation of liquids. New York (NY): Clarendon Press; 1989.
  • Frenkel D and Smit B. Understanding molecular simulation. London: Academic Press; 1996.
  • Ryckaert J-P and Bellemans A. Molecular dynamics of liquid alkanes. Faraday Discuss Chem Soc. 66:1978;95.
  • Daivis PJ and Evans DJ. Transport coefficients of liquid butane near the boiling point by equilibrium molecular dynamics. J Chem Phys. 103:1995;4261.
  • Fioroni M and Vogt D. Toluene model for molecular dynamics simulations in the ranges 298<T(K)<350and0.1<P(MPa)<10. J Phys Chem B. 108:2004;11774.
  • Wu Y, Tepper HL and Voth GA. Flexible simple point-charge water model with improved liquid-state properties. J Chem Phys. 124:2006;024503.
  • Raabe G and Sadus RJ. Surface enhanced Raman with anodized aluminum oxide films. J Chem Phys. 126:2007;044701.
  • Fennell CJ and Gezelter JD. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J Chem Phys. 124:2006;234104.
  • Hansen J, Schrøder T and Dyre J. Simplistic Coulomb forces in molecular dynamics: comparing the Wolf and shifted-force approximations. J Phys Chem B. 116:2012;5738.
  • Irving J and Kirkwood J. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J Chem Phys. 18:1950;817.
  • Todd B and Daivis P. Nonequilibrium molecular dynamics. Cambridge: Cambridge University Press; 2017.
  • Mairhofer J and Sadus RJ. Thermodynamic properties of supercritical n−m Lennard-Jones fluids and isochoric and isobaric heat capacity maxima and minima. J Chem Phys. 139:2013;154503.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.