165
Views
3
CrossRef citations to date
0
Altmetric
Articles

Structural geometry, electronic structure, thermo-electronic and optical properties of GaCuO2 and GaCu0.94Fe0.06O2: a first principle approach of three DFT functionals

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1411-1422 | Received 03 Apr 2021, Accepted 30 Aug 2021, Published online: 18 Sep 2021

References

  • Davis E, Mott N. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag. 1970;22:0903–0922.
  • Hudgins JLS, Grigory S, Santi E, et al. An assessment of wide bandgap semiconductors for power devices. IEEE Trans Power Electron. 2003;18:907–914.
  • Huang XM, Chelikowsky JR, Kronik L. Size-dependent spintronic properties of dilute magnetic semiconductor nanocrystals. Phys Rev Lett.. 2005;94:236801.
  • Awschalom DDF, Michael E. Challenges for semiconductor spintronics. Nat Phys. 2007;3:153–159.
  • Fortunato EB, Pedro MR. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater. 2012;24:2945–2986.
  • Chilla JL, Butterworth A, Stuart D, et al. High-power optically pumped semiconductor lasers. In: Solid State lasers XIII: Technology and devices, San Jose, CA, 2004, pp. 143–150.
  • Steven DTF, Smith L, Brazil B. Automated data collection using simple and inexpensive microcontrollers and semiconductor sensors. In: CHI '99 extended abstracts. New York (NY): ACM Press; 1999. doi:https://doi.org/10.1145/632716.632938.
  • Mario KJCB, Noh YY. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Adv Mater. 2013;25:4210–4244.
  • Jianquan JLD, Yang L, Zhang T, et al. Decoupling of thermo-electronic effect by traveling photothermal mirror method for characterization of thermal properties of semiconductors. Appl Phys Lett. 2020;116:114102.
  • Hongwei AMDS, Rhyner MN, Ruan G, et al. A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys Chem Chem Phys. 2006;8:3895–3903.
  • Sandra CEE, Avlicek M, Stadler P, et al. The role of heteroatoms leading to hydrogen bonds in view of extended chemical stability of organic semiconductors. Adv Funct Mater. 2015;25:6679–6688.
  • Jie QXF, Zhang W, Song Y, et al. Physical properties of group 14 semiconductor alloys in orthorhombic phase. J Appl Phys. 2019;126:045709.
  • Chakma U, Kumer A, Chakma KB, et al. Electronics structure and optical properties of SrPbO3 and SrPb0.94Fe0.06O3: a first principle approach. Eurasian Chem Commun. 2020;2:573–580.
  • Chakma U, Kumer A, Chakma KB, et al. Electronics structure and optical properties of Ag2BiO3,(Ag2)0.88Fe0.12BiO3: a first principle approach. Adv J Chem Sect A Theor Eng Appl Chem. 2020;3:542–550.
  • Hasan MM, Ajoy K, Chakma U. Theoretical investigation of doping effect of Fe for SnWO4 in electronic structure and optical properties: DFT based first principle study. Adv J Chem Sect A. 2020;3:639–644.
  • Islam MT, Ajoy K, Debashis HOWLADER, et al. Electronics structure and optical properties of Mg(BiO2)4 and Mg(Bi0.91Ge0.083O2)4: a first principle approach. Turkish Comput Theor Chem. 2020;4:24–31.
  • Kamal BC, Ajoy K, Unesco C, et al. A theoretical investigation for electronics structure of Mg(BiO2)2 semiconductor using first principle approach. Int J New Chem. 2020;7:247–255.
  • Kamal Bikash C, Ajoy K, Unesco C, et al. A theoretical investigation for electronics structure of Mg(BiO2)2 semiconductor using first principle approach. Int J New Chem. 2020;2020:247–255.
  • Md Tawhidul Islam CD, Kumer A, Unesco H. A computational investigation of electronic structure and optical properties of AlCuO2 and AlCu0.96Fe0.04O2: a first principle approach. Orbital Electron J Chem. 2021;13:58–64.
  • Leonardo SADS, Caroli E, Mancini AM, et al. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors. 2009;9:3491–3526.
  • Sebastién NRK, Dornfeld D. Quantifying the environmental footprint of semiconductor equipment using the environmental value systems analysis (EnV-S). IEEE Trans Semicond Manuf. 2004;17:554–561.
  • Wu HK, Mansoor A, Hussain AS. Process control perspective for process analytical technology: integration of chemical engineering practice into semiconductor and pharmaceutical industries. Chem Eng Commun. 2007;194:760–779.
  • Jingrun LRZ, Qiao S-Z, Jaroniec M. Characterization of semiconductor photocatalysts. Chem Soc Rev. 2019;48:5184–5206.
  • Md Mahmud Hasan AU, Kumer C, Md TI. Structural, optical and electronic properties of ZnAg2GeTe4 and ZnAg2Ge0.93Fe0.07Te4 photocatalyst: a first principle approach. Mol Simul. 2021;47:1–13.
  • Islam MJ, Kumer A. First-principles study of structural, electronic and optical properties of AgSbO3 and AgSb0.78Se 0.22O3 photocatalyst. SN Appl Sci. 2020;2:251.
  • Chakma SUMM, Kumer A, Mohammad JI, et al. The exploration of structural, electronic and optical properties for MoS2 and Mo0.95W0.05S2 photocatalyst effort on wastewater treatment using DFT functional of first principle approach. App J Environ Eng Sci. 2021;7:103–113.
  • Bholanath TPS, Huang J, Katz HE. Organic semiconductor devices with enhanced field and environmental responses for novel applications. MRS Bull. 2008;33:690–696.
  • Dongge DMY. Development of organic semiconductor photodetectors: from mechanism to applications. Adv Opt Mater. 2019;7:1800522.
  • Huanli CDW, Jiang L, Hu W. Organic semiconductor crystals. Chem Soc Rev. 2018;47:422–500.
  • Samuel IDWT, Alexander G. Organic semiconductor lasers. Chem Rev.. 2007;107:1272–1295.
  • Julian WSZ, Chigrinov VG, Kwok HS, et al. Optically addressable photoaligned semiconductor nanorods in thin liquid crystal films for display applications. Adv Opt Mater. 2018;6:1800250.
  • Makoto MYO, Shimizu Y, Fujii A. Carrier transport and device applications of the organic semiconductor based on liquid crystalline non-peripheral octaalkyl phthalocyanine. Liq Cryst. 2018;45:2376–2389.
  • Rüdiger AJMN. Physical chemistry of semiconductor−liquid interfaces. J Phys Chem. 1996;100:13061–13078.
  • Addamiano A. Preparation and photoluminescence of Silicon carbide phosphors doped with group III a elements and/or nitrogen. J Electrochem Soc. 1966;113:134–136.
  • Masahiro HYK, Hyodo H, Kurita M, et al. P-type electrical conduction in transparent thin films of CuAlO2. Nature. 1997;389:939–942.
  • RJ MINM. New structural systematics in the II–VI, III–V, and group-IV semiconductors at high pressure. Physica Status Solidi (b). 1996;198:389–402.
  • Akira YTN, Tsubomura H. Efficient photoelectrochemical conversion of solar energy with N-type silicon semiconductor electrodes surface-doped with IIIA-Group elements. Chem Lett.. 1982;11:1071–1074.
  • M. C. Saba C, Bloch J, Thierry-Mieg V, et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature. 2001;414:731.
  • Jung-Hun MSK, Singisetti U, Ma Z. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond. J Mater Chem C. 2017;5:8338–8354.
  • Aziz SB. Modifying poly (vinyl alcohol)(PVA) from insulator to small-bandgap polymer: A novel approach for organic solar cells and optoelectronic devices. J Electron Mater. 2016;45:736–745.
  • Ali MI, Jahidul M, Rafid M, et al. The computational screening of structural, electronic, and optical properties for SiC, Si0.94Sn0.06C, and Si0.88Sn0.12C lead-free photovoltaic inverters using DFT functional of first principle approach. Eurasian Chem Commun. 2021;3:327–338.
  • Tomal Hossain AMSH, Ali MH, Chakma U, et al. Investigation of optoelectronics, thermoelectric, structural and photovoltaic properties of CH3NH3SnBr3 lead-free organic perovskites. Chem Method. 2021;5:259–270.
  • Ching-Hwa L-CHT. Synthesis, optical characterization, and environmental applications of β-Ga2O3 nanowires. Gallium Oxide Technol Dev Appl. 2019, pp. 67–90.
  • Jiancheng SYP, Cary IV, Patrick H, et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev. 2018;5:011301.
  • Geller S. Crystal structure of β-Ga2O3. J Chem Phys. 1960;33:676–684.
  • Akito MAKM, Calkins J, Kim J, et al. Perspective—opportunities and future directions for Ga2O3. ECS J Solid State Sci Technol. 2017;6:P356.
  • Ju-Hee CSL, Muth J, Dickey MD. 3D printing of free standing liquid metal microstructures. Adv Mater. 2013;25:5081–5085.
  • Rui MZH, Lam LS, Wilcoxon R, et al. On the potential of galinstan-based minichannel and minigap cooling. IEEE Trans Compon, Packag Manuf Technol. 2013;4:46–56.
  • Khondoker M, Sameoto D. Fabrication methods and applications of microstructured gallium based liquid metal alloys. Smart Mater Struct. 2016;25:093001.
  • Hiroshi JCAW, Hanks CT, Okabe T. Correlation of cytotoxicity with elemental release from mercury-and gallium-based dental alloys in vitro. Dent Mater. 1994;10:298–303.
  • V. M. Volkovich DS, Yamshchikov LF, Chukin AV, et al. Thermodynamic properties of uranium in gallium–aluminium based alloys. J Nucl Mater. 2015;465:153–160.
  • A. S. Shubin KY, Yamshchikov LF. The diffusion of gallium into copper-tin alloy particles. Defect Diffus Forum. 2009;283–286:238–242.
  • Ramanujam JS, Udai P. Copper indium gallium selenide based solar cells – a review. Energy Environ Sci. 2017;10:1306–1319.
  • Ajoy K, Chakma U. Developing the amazing photocatalyst of ZnAg2GeSe4, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 through the computational explorations by four DFT functionals. Heliyon. 2021;7:e07467.
  • Kieron JPBP, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865.
  • del Campo JMG, José L, Trickey SB, et al. Non-empirical improvement of PBE and its hybrid PBE0 for general description of molecular properties. J Chem Phys. 2012;136:104108.
  • I. B. Aanouz A, El-Khatabi K, Lakhlifi T, et al. Moroccan medicinal plants as inhibitors against SARS-CoV-2 main protease: computational investigations. J Biomol Struct Dyn. 2020;39:2971–2979. doi:https://doi.org/10.1080/07391102.2020.1758790,.
  • Roberto AMOF, Rérat M. Ab initio calculation of the ultraviolet–visible (UV-vis) absorption spectrum, electron-loss function, and reflectivity of solids. J Chem Theory Comput. 2015;11:3245–3258.
  • Debasish PBK, Cohen RE, Rubner MF. Structural color via layer-by-layer deposition: layered nanoparticle arrays with near-UV and visible reflectivity bands. J Mater Chem. 2009;19:8920–8927.
  • A. M. A. Al Mamun M, Habib A, Chakma U, et al. Structural, electronic, optical properties and molecular dynamics study of WO3 W0. 97Ag0. 03O3 and W0. 94Ag0. 06O3 photocatalyst by the first principle of DFT study. Egypt J Chem. 2021;63:5117–5126.
  • T. N. M. Duy J, Pichard G. CMT: the material for fiber optical communication devices. J Cryst Growth. 1985;72:490–495.
  • Jes JCBK, Birks TA, Russell PSJ. Photonic band gap guidance in optical fibers. Science. 1998;282:1476–1478.
  • Smith JM. Introduction to chemical engineering thermodynamics. New York: ACS Publications; 1950.
  • Kaufman L, Cohen M. Thermodynamics and kinetics of martensitic transformations. Prog Metal Phys. 1958;7:165–246.
  • Shapiro AH. The dynamics and thermodynamics of compressible fluid flow. New York: Wiley; 1953.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.