297
Views
1
CrossRef citations to date
0
Altmetric
Articles

Rheological study of the effects of size/shape of graphene oxide and SiO2 nanoparticles on shear thickening behaviour of polyethylene glycol 400-based fluid: molecular dynamics simulation

, ORCID Icon, &
Pages 120-130 | Received 21 Jun 2021, Accepted 06 Oct 2021, Published online: 09 Nov 2021

References

  • Ramsden J. Nanotechnology: an introduction. Amsterdam: Elsevier Science; 2011.
  • Ramsden J. Applied nanotechnology: the conversion of research results to products. Amsterdam: Elsevier Science; 2013.
  • Saini R, Saini S, Sharma S. Nanotechnology: the future medicine. J Cutan Aesthet Surg. 2010;3:32–33.
  • Geim AK, Novoselov KS. The rise of graphene. Nanoscience and technology: a collection of reviews from nature journals. Singapore: World Scientific; 2010; p. 11–19.
  • Haynes WM. CRC handbook of chemistry and physics. UK: CRC Press; 2011.
  • Boehm HP, Setton R, Stumpp E. Nomenclature and terminology of graphite intercalation compounds (IUPAC recommendations 1994). Pure Appl Chem. 1994;66:1893–1901.
  • Brownson DAC, Banks CE. The handbook of graphene electrochemistry. London: Springer; 2014.
  • Zumdahl SS, DeCoste DJ. Chemical principles. USA: Cengage Learning; 2012.
  • Iler RK, IR K. The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. London: Wiley; 1979.
  • Rothon R. Fillers for polymer applications. Berlin: Springer International Publishing; 2017.
  • Bergna HE, Roberts WO. Colloidal silica: fundamentals and applications. Ukraine: CRC Press; 2005.
  • Binks BP, Horozov TS. Colloidal particles at liquid interfaces. Cambridge: Cambridge University Press; 2006.
  • Tropea C, Yarin AL, Foss JF. Springer handbook of experimental fluid mechanics. Berlin: Springer; 2007.
  • Irgens F. Rheology and non-Newtonian fluids. Berlin: Springer International Publishing; 2013.
  • Liu AJ, Nagel SR. Jamming and rheology: constrained dynamics on microscopic and macroscopic scales. London: Taylor & Francis; 2001.
  • Brown E, Zhang H, Forman NA, et al. Shear thickening and jamming in densely packed suspensions of different particle shapes. Phys Rev E. 2011;84:031408.
  • Salunkhe AA, Overney RM, Berg JC. The use of boundary lubricants for the reduction of shear thickening and jamming in abrasive particle slurries. Colloids Surf A: Physicochem Eng Aspects. 2018;537:13–19.
  • Liu AJ, Nagel SR. Jamming is not just cool any more. Nature. 1998;396:21–22.
  • Cates ME, Wittmer JP, Bouchaud JP, et al. Jamming, force chains, and fragile matter. Phys Rev Lett. 1998;81:1841–1844.
  • Zojaji M, Hydarinasab A, Hashemabadi SH, et al. Rheological behaviour of shear thickening fluid of graphene oxide and SiO2 polyethylene glycol 400-based fluid with molecular dynamic simulation. Mol Simul. 2021;47:1–9.
  • Rahman A. Correlations in the motion of atoms in liquid argon. Phys Rev. 1964;136:A405.
  • Jolfaei NA, Jolfaei NA, Hekmatifar M, et al. Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches. Comput Methods Programs Biomed. 2020;185:105169.
  • Sabetvand R, Ghazi ME, Izadifard M. Studying temperature effects on electronic and optical properties of cubic CH3NH3SnI3 perovskite. J Comput Electron. 2020;19:70–79.
  • Küçüksönmez E, Servantie J. Shear thinning and thickening in dispersions of spherical nanoparticles. Phys Rev E. 2020;102:012604.
  • Chen K, Wang Y, Xuan S, et al. A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid. J Colloid Interface Sci. 2017;497:378–384.
  • Ghosh A, Majumdar A, Butola BS. Modulating the rheological response of shear thickening fluids by variation in molecular weight of carrier fluid and its correlation with impact resistance of treated p-aramid fabrics. Polym Test. 2020;91:106830.
  • Nishikawa Y, Ikeda A, Berthier L. Relaxation dynamics of non-Brownian spheres below jamming. J Stat Phys. 2021;182:37.
  • Fu K, Wang H, Zhang YX, et al. Rheological and energy absorption characteristics of a concentrated shear thickening fluid at various temperatures. Int J Impact Eng. 2020;139:103525.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.
  • Plimpton S, Pollock R, Stevens M. Proc of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN. 1997.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell Simul Mater Sci Eng. 2009;18:015012.
  • Rapaport DC, Rapaport DCR. The art of molecular dynamics simulation. Italy: Cambridge University Press; 2004.
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81:511–519.
  • Thijssen J. Computational physics. Cambridge: Cambridge University Press; 2007.
  • Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94:8897–8909.
  • Tersoff J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B. 1989;39:5566–5568.
  • Verlet L. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev. 1967;159:98.
  • Rappé AK, Casewit CJ, Colwell K, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114:10024–10035.
  • Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys Rev B. 1988;37:6991–7000.
  • Swope WC, Andersen HC, Berens PH, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys. 1982;76:637–649.
  • Green MS. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J Chem Phys. 1954;22:398–413.
  • Kubo R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J Phys Soc Jpn. 1957;12:570–586.
  • Singh M, Verma SK, Biswas I, et al. Effect of molecular weight of polyethylene glycol on the rheological properties of fumed silica-polyethylene glycol shear thickening fluid. Mater Res Express. 2018;5:055704.
  • Yu K, Cao H, Qian K, et al. Shear-thickening behavior of modified silica nanoparticles in polyethylene glycol. J Nanoparticle Res. 2012;14:747.
  • Grover G, Verma SK, Thakur A, et al. The effect of particle size and concentration on the ballistic resistance of different shear thickening fluids. Mater Today Proc. 2020;28:1472–1476.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.