1,389
Views
0
CrossRef citations to date
0
Altmetric
Articles

Predicting nanoparticle uptake by biological membranes: theory and simulation

&
Pages 150-167 | Received 03 Feb 2021, Accepted 12 Oct 2021, Published online: 21 Nov 2021

References

  • Sajid M, Ilyas M, Basheer C, et al. Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res. 2015;22(6):4122–4143.
  • Joris F, Manshian BB, Peynshaert K, et al. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap. Chem Soc Rev. 2013;42(21):8339–8359.
  • Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26–49.
  • Yildirimer L, Thanh NTK, Loizidou M, et al. Toxicology and clinical potential of nanoparticles. Nano Today. 2011;6(6):585–607.
  • Yamashita K, Yoshioka Y, Higashisaka K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 2011;6(5):321–328.
  • Gottschalk F, Nowack B. The release of engineered nanomaterials to the environment. J Environ Monit. 2011;13(5):1145–1155.
  • Nel A, Xia T, M€adler L, et al. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–627.
  • Rouse I, Power D, Brandt EG, et al. First principles characterisation of bio–nano interface. Phys Chem Chem Phys. 2021;23:13473–13482.
  • http://smartnanotox.scientia.global/
  • EU NanoSafety cluster – about the NanoSafety cluster. Available from: https://www.nanosafetycluster.eu/.
  • Kettler K, Veltman K, van de Meent D, et al. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem. 2014;33:481–492.
  • Michel R, Kesselman E, Plostica T, et al. Internalization of silica nanoparticles into fluid liposomes: formation of interesting hybrid colloids. Angew Chem Int Ed. 2014;53:12441–12445.
  • Roiter Y, Ornatska M, Rammohan AR, et al. Interaction of nanoparticles with lipid membrane. Nano Lett. 2008;8:941–944.
  • Tollefsen KE, Scholz S, Cronin MT, et al. Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA). Regul Toxicol Pharmacol. 2014;70:629–640.
  • Bunderson-Schelvan M, Holian A, Hamilton RF. Engineered nanomaterial-induced lysosomal membrane permeabilization and anti-cathepsin agents. Null. 2017;20:230–248.
  • Pavan C, Fubini B. Unveiling the variability of “quartz hazard” in light of recent toxicological findings. Chem Res Toxicol. 2017;30:469–485.
  • Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C. 1973;28:693–703.
  • Deserno M. Elastic deformation of a fluid membrane upon colloid binding. Phys Rev E. 2004;69:031903.
  • Bahrami AH, Lipowsky R, Weikl TR. The role of membrane curvature for the wrapping of nanoparticles. Soft Matter. 2016;12:581–587.
  • Agudo-Canalejo J, Lipowsky R. Adhesive nanoparticles as local probes of membrane curvature. Nano Lett. 2015;15:7168–7173.
  • Yu Q, Othman S, Dasgupta S, et al. Nanoparticle wrapping at small non-spherical vesicles: curvatures at play. Nanoscale. 2018;10:6445–6458.
  • Spanke HT, Style RW, François-Martin C, et al. Wrapping of microparticles by floppy lipid vesicles. Phys Rev Lett. 2020;125:198102.
  • Laradji M, Kumar PBS, Spangler EJ. Adhesion and aggregation of spherical nanoparticles on lipid membranes. Chem Phys Lipids. 2020;233:104989.
  • Kokot H, Kokot B, Sebastijanović A, et al. Prediction of chronic inflammation for inhaled particles: the impact of material cycling and quarantining in the lung epithelium. Adv Mater. 2020;32:2003913.
  • Nativo P, Prior IA, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano. 2008;2:1639–1644.
  • Contini C, Schneemilch M, Gaisford S, et al. Nanoparticle–membrane interactions. J Exp Nanosci. 2018;13:62–81.
  • Spangler EJ, Upreti S, Laradji M. Partial wrapping and spontaneous endocytosis of spherical nanoparticles by tensionless lipid membranes. J Chem Phys. 2016;144:044901.
  • van der Wel C, Vahid A, Šarić A, et al. Lipid membrane-mediated attraction between curvature inducing objects. Sci Rep. 2016;6:32825.
  • Jämbeck JPM, Lyubartsev AP. Derivation and systematic validation of a refined All-Atom force field for phosphatidylcholine lipids. J Phys Chem B. 2012;116:3164–3179.
  • Jämbeck JPM, Lyubartsev AP. An extension and further validation of an All-atomistic force field for Biological membranes. J Chem Theory Comput. 2012;8:2938–2948.
  • Jämbeck JPM, Lyubartsev AP. Another piece of the membrane puzzle: extending Slipids further. J Chem Theory Comput. 2013;9:774–784.
  • Schneemilch M, Quirke N. Free energy of adsorption of supported lipid bilayers from molecular dynamics simulation. Chem Phys Lett. 2016;664:199–204.
  • Schneemilch M, Quirke N. Free energy of adhesion of lipid bilayers on silica surfaces. J Chem Phys. 2018;148:194704. Erratum, J Chem Phys. 2019;150:229901.
  • Schneemilch M, Quirke N. Free energy of adhesion of lipid bilayers on titania surfaces. J Chem Phys. 2019;151:134707.
  • Mirzoev A, Lyubartsev AP. Magic: software package for multiscale modeling. J Chem Theory Comput. 2013;9:1512–1520.
  • Evans E, Heinrich V, Ludwig F, et al. Dynamic tension spectroscopy and strength of biomembranes. Biophys J. 2003;85:2342–2350.
  • Hu M, Diggins P, Deserno M. Determining the bending modulus of a lipid membrane by simulating buckling. J Chem Phys. 2013;138:214110.
  • Watson MC, Brandt EG, Welch PM, et al. Determining biomembrane bending rigidities from simulations of modest size. Phys Rev Lett. 2012.109.028102
  • Müller M. Theoretical studies of fluid membrane mechanics [PhD thesis]. Mainz: Johannes Gutenberg-Universitat; 2007.
  • Mkrtchyan S, Ing C, Chen JZY. Adhesion of cylindrical colloids to the surface of a membrane. Phys Rev E. 2010. 81.011904
  • Bin X, Zawisza I, Goddard JD, et al. Electrochemical and PM-IRRAS studies of the effect of the static electric field on the structure of the DMPC bilayer supported at a Au(111) electrode surface. Langmuir. 2005;21:330–347.
  • Emami FS, Puddu V, Berry RJ, et al. Force field and a surface model database for silica to simulate interfacial properties in atomic resolution. Chem Mater. 2014;26:2647–2658.
  • Anderson TH, Min Y, Weirich KL, et al. Formation of supported bilayers on silica substrates. Langmuir. 2009;25:6997–7005.
  • Schneemilch M, Quirke N. Unpublished data.
  • Gallala HD, Sandhoff K. Biological function of the cellular lipid BMP—BMP as a key activator for cholesterol sorting and membrane digestion. Neurochem Res. 2011;36:1594–1600.
  • Dasgupta S, Auth T, Gompper G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett. 2014;14:687–693.
  • Esch TR, Gadaczek I, Bredow T. Surface structures and thermodynamics of low-index of rutile, brookite and anatase – a comparative DFT study. Appl Surf Sci. 2014;288:275–287.
  • Deserno M, Gelbart WM. Adhesion and wrapping in colloid−vesicle complexes. J Phys Chem B. 2002;106:5543–5552.
  • Contini C, Hindley JW, Macdonald TJ, et al. Size dependency of gold nanoparticles interacting with model membranes. Commun Chem. 2020;3:130.
  • Dietrich C, Angelova M, Pouligny B. Adhesion of latex spheres to giant phospholipid vesicles: statics and dynamics. J Phys II. 1997;7:1651–1682.
  • Gauthier NC, Masters TA, Sheetz MP. Mechanical feedback between membrane tension and dynamics. Trends Cell Biol. 2012;22:527–535.
  • Raucher D, Sheetz MP. Characteristics of a membrane reservoir buffering membrane tension. Biophys J. 1999;77:1992–2002.