417
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effect of oxygen-containing functional groups of layered graphene oxide membrane on the removal of amoxicillin: a molecular dynamics study

, ORCID Icon &
Pages 185-196 | Received 19 Mar 2021, Accepted 23 Oct 2021, Published online: 30 Nov 2021

References

  • Moarefian A, Golestani HA, Bahmanpour H. Removal of amoxicillin from wastewater by self-made polyethersulfone membrane using nanofiltration. J Environ Health Sci Eng. 2014;12(1):127.
  • Phadunghus K, Wongrueng A, Rakruam P, Wattanachira S, Punyapalakul P. Efficiencies of nf and ro membranes on pharmaceutical removal and membrane fouling effects. Eng J. 2017;21(3):101–112.
  • Mompelat S, Le Bot B, Thomas O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. International Environ Int. 2009;35(5):803–814.
  • Nghiem LD, Schafer AI, Elimelech M. Pharmaceutical retention mechanisms by nanofiltration membranes. Science & Technology Environ. Sci. Technol.. 2005;39(19):7698–7705.
  • Wei X, Bao X, Wu J, Li C, Shi Y, Chen J, Lv B, Zhu B. Typical pharmaceutical molecule removal behavior from water by positively and negatively charged composite hollow fiber nanofiltration membranes. Advances RSC Adv. 2018;8(19):10396–10408.
  • Verlicchi P, Al Aukidy M, Galletti A, Petrovic M, Barceló D. Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci Total Environ. 2012;430:109–118.
  • Yang GH, Bao DD, Zhang DQ, Wang C, Qu LL, Li HT. Removal of antibiotics from water with an all-carbon 3D nanofiltration membrane. Research Letters Nanoscale Res Lett. 2018;13(1):146.
  • Batt AL, Bruce IB, Aga DS. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ Pollut. 2006;142(2):295–302.
  • Mansouri H, Carmona RJ, Gomis-Berenguer A, Souissi-Najar S, Ouederni A, Ania CO. Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons. Colloid and Interface Science J Colloid Interface Sci. 2015;449:252–260.
  • Yang Q, Chen G, Zhang J, Li H. Adsorption of sulfamethazine by multi-walled carbon nanotubes: effects of aqueous solution chemistry. Advances RSC Adv. 2015;5(32):25541–25549.
  • Yu F, Ma J, Bi D. Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene. Environ Sci Pollut Res. 2015;22(6):4715–4724.
  • Zhuang Y, Yu F, Ma J, Chen J. Graphene as a template and structural scaffold for the synthesis of a 3D porous bio-adsorbent to remove antibiotics from water. RSC Adv. 2015;5(35):27964–27969.
  • Radjenovic J, Petrovic M, Ventura F, Barceló D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res.. 2008;42(14):3601–3610.
  • Cohen-Tanugi D, Lin LC, Grossman JC. Multilayer nanoporous graphene membranes for water desalination. Nano Lett.. 2016;16(2):1027–1033. PMID: 26806020.
  • Cath TY, Elimelech M, McCutcheon JR, McGinnis RL, Achilli A, Anastasio D, Brady AR, Childress AE, Farr IV, Hancock NT, Lampi J. Standard methodology for evaluating membrane performance in osmotically driven membrane processes. Desalination. 2013;312:31–38. Recent Advances in Forward Osmosis; http://www.sciencedirect.com/science/article/pii/S0011916412003657.
  • McCutcheon JR, McGinnis RL, Elimelech M. A novel ammonia | carbon dioxide forward (direct) osmosis desalination process. Desalination. 2005;174(1):1–11.
  • Zaviska F, Drogui P, Grasmick A, Azais A, Héran M. Nanofiltration membrane bioreactor for removing pharmaceutical compounds. Membrane Science J Memb Sci. 2013;429:121–129.
  • Sharma S, Ruparelia JP, Patel ML. A general review on advanced oxidation processes for waste water treatment. Nirma University International Conference, Ahmedabad, Gujarat. pp. 382–481. 2011.
  • Thorsen T. Concentration polarisation by natural organic matter (NOM) in NF and UF. J Memb Sci. 2004;233(1):79–91.
  • Novoselov KS, Geim AK, Morozov SV, Jiang DE, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–669.
  • Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–388.
  • Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Letters Nano Lett.. 2008;8(3):902–907.
  • Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM, Su X. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci. 2012;368(1):540–546.
  • Han Y, Xu Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification. Adv Funct Mater. 2013;23(29):3693–3700.
  • Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science. 2012;335(6067):442–444.
  • Mi B. Graphene oxide membranes for ionic and molecular sieving. Science. 2014;343(6172):740–742.
  • Chu KH, Fathizadeh M, Yu M, Flora JR, Jang A, Jang M, Park CM, Yoo SS, Her N, Yoon Y. Evaluation of removal mechanisms in a graphene oxide-coated ceramic ultrafiltration membrane for retention of natural organic matter, pharmaceuticals, and inorganic salts. Applied Materials & Interfaces ACS Appl Mater Interfaces. 2017;9(46):40369–40377.
  • Wang Y, Wang X, Li M, Dong J, Sun C, Chen G. Removal of pharmaceutical and personal care products (PPCPs) from municipal waste water with integrated membrane systems, MBR-RO/NF. Journal of Environmental Research and Public Health Int J Environ Res Public Health. 2018;15(2):269.
  • Li B, Cui Y, Japip S, Thong Z, Chung TS. Graphene oxide (GO) laminar membranes for concentrating pharmaceuticals and food additives in organic solvents. Carbon. 2018;130:503-–514.
  • Bahamon D, Vega LF. Pharmaceutical removal from water effluents by adsorption on activated carbons: A monte carlo simulation study. Langmuir. 2017;33(42):11146–11155.
  • Bahamon D, Vega LF. Molecular simulations of phenol and ibuprofen removal from water using multilayered graphene oxide membranes. Mol Phys. 2019;117(23–24):1–12.
  • Williams CD, Carbone P, Siperstein FR. Computational characterisation of dried and hydrated graphene oxide membranes. Nanoscale. 2018;10:1946–1956.
  • Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisited. J Phys Chem B. 1998;102(23):4477–4482.
  • Tang H, Liu D, Zhao Y, Yang X, Lu J, Cui F. Molecular dynamics study of the aggregation process of graphene oxide in water. J Phys Chem C. 2015;119(47):26712–26718.
  • Shih CJ, Lin S, Sharma R, Strano MS, Blankschtein D. Understanding the ph-dependent behavior of graphene oxide aqueous solutions: A comparative experimental and molecular dynamics simulation study. Langmuir. 2012;28(1):235–241. PMID: 22039913.
  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781–1802.
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc.. 1996;118(45):11225–11236.
  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. Chemical Physics J Chem Phys. 1983;79(2):926–935.
  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. Chemical Physics J Chem Phys. 1995;103(19):8577–8593.
  • Liu Q, Chen M, Mao Y, Liu G. Theoretical study on Janus graphene oxide membrane for water transport. Front Chem Sci Eng. 2020;15(4):1–9.
  • Liu Q, Cheng L, Liu G. Enhanced selective hydrogen permeation through graphdiyne membrane: A theoretical study. Membranes. 2020;10(10):286.
  • Dahanayaka M, Liu B, Hu Z, Pei QX, Chen Z, Law AW, Zhou K. Graphene membranes with nanoslits for seawater desalination via forward osmosis. Phys Chem Chem Phys. 2017;19(45):30551–30561.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.