152
Views
2
CrossRef citations to date
0
Altmetric
Articles

A synergistic multitargeted of BET and HDAC: an intra-molecular mechanism of communication in treatment of Waldenström macroglobulinemia

, & ORCID Icon
Pages 197-208 | Received 18 Aug 2021, Accepted 03 Nov 2021, Published online: 24 Nov 2021

References

  • Kapoor P, Paludo J, Vallumsetla N, et al. Waldenström macroglobulinemia: what a hematologist needs to know. Blood Rev. 2015;29(5):301–319.
  • Ansell SM, Kyle RA, Reeder CB, et al. Diagnosis and management of Waldenström macroglobulinemia: Mayo stratification of macroglobulinemia and risk-adapted therapy (mSMART) guidelines. Mayo Clin Proc. 2010;85(9):824–833.
  • Treon SP, Gustine J, Meid K, et al. Ibrutinib monotherapy in symptomatic, treatment-naïve patients With Waldenström macroglobulinemia. J Clin Oncol. 2018;36(27):2755–2761.
  • Han W, Matissek SJ, Jackson DA, et al. Targeting IL-6 receptor reduces IgM levels and tumor growth in Waldenström macroglobulinemia. Oncotarget. 2019;10(36):3400–3407.
  • Sun JY, Xu L, Tseng H, et al. Histone deacetylase inhibitors demonstrate significant Preclinical activity as single agents, and in combination with Bortezomib in Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2011;11(1):152–156.
  • de Weerdt I, Koopmans SM, Kater AP, et al. Incidence and management of toxicity associated with ibrutinib and idelalisib: a practical approach. Haematologica. 2017;102(10):1629–1639.
  • Tate CR, Rhodes LV, Segar HC, et al. Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res. 2012;14(3):R79.
  • Dawson MA, Kouzarides T, Huntly BJP. Targeting epigenetic readers in cancer. New England J Med. 2012;367(7):647–657.
  • Shi J, Vakoc CR. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell. 2014;54(5):728–736.
  • Liu S, Li F, Pan L, et al. BRD4 inhibitor and histone deacetylase inhibitor synergistically inhibit the proliferation of gallbladder cancer in vitro and in vivo. Cancer Sci. 2019;110(8):2493–2506.
  • Kim SR, Lewis JM, Cyrenne BM, et al. BET inhibition in advanced cutaneous T cell lymphoma is synergistically potentiated by BCL2 inhibition or HDAC inhibition. Oncotarget. 2018;9(49):29193–29207.
  • Bhalla KN. Epigenetic and chromatin modifiers As targeted therapy of hematologic malignancies. J Clin Oncol. 2005;23(17):3971–3993.
  • Borbely G, Haldosen L-A, Dahlman-Wright K, et al. Induction of USP17 by combining BET and HDAC inhibitors in breast cancer cells. Oncotarget. 2015;6(32):33623–33635.
  • Kelly RDW, Cowley SM. The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts. Biochem Soc Trans. 2013;41(3):741–749.
  • Mosashvilli D, Kahl P, Mertens C, et al. Global histone acetylation levels: Prognostic relevance in patients with renal cell carcinoma. Cancer Sci. 2010;101(12):2664–2669.
  • Minardi D, Lucarini G, Filosa A, et al. Prognostic role of global DNA-methylation and histone acetylation in pT1a clear cell renal carcinoma in partial nephrectomy specimens. J Cell Mol Med. 2009;13(8b):2115–2121.
  • Elsheikh SE, Green AR, Rakha EA, et al. Global histone modifications in breast cancer correlate with tumor phenotypes, Prognostic factors, and patient outcome. Cancer Res. 2009;69(9):3802–3809.
  • Ebrahimi A, Schittenhelm J, Honegger J, et al. Prognostic relevance of global histone 3 lysine 9 acetylation in ependymal tumors. J Neurosurg. 2013;119(6):1424–1431.
  • Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5(9):769–784.
  • Lovén J, Hoke HA, Lin CY, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153(2):320–334.
  • Lockwood WW, Zejnullahu K, Bradner JE, et al. Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc Natl Acad Sci. 2012;109(47):19408–19413.
  • Lee TI, Young RA. Transcriptional regulation and Its misregulation in disease. Cell. 2013;152(6):1237–1251.
  • Garnier J-M, Sharp PP, Burns CJ. BET bromodomain inhibitors: a patent review. Expert Opin Ther Pat. 2014;24(2):185–199.
  • Fiskus W, Sharma S, Qi J, et al. Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myelogenous leukemia cells. Mol Cancer Ther. 2014;13(5):1142–1154.
  • Amemiya S, Yamaguchi T, Hashimoto Y, et al. Synthesis and evaluation of novel dual BRD4/HDAC inhibitors. Bioorg Med Chem. 2017;25(14):3677–3684.
  • Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067–1073.
  • Bhadury J, Nilsson LM, Veppil Muralidharan S, et al. BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma. Proc Natl Acad Sci. 2014;111(26):E2721–E2730.
  • Matissek SJ, Han W, Karbalivand M, et al. Epigenetic targeting of Waldenström macroglobulinemia cells with BET inhibitors synergizes with BCL2 or histone deacetylase inhibition. Epigenomics. 2021;13(2):129–144. Available from: https://www.futuremedicine.com/doi/https://doi.org/10.2217/epi-2020-0189.
  • Boran ADW, Iyengar R. Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel. 2010;13(3):297–309.
  • Raghavendra NM, Pingili D, Kadasi S, et al. Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur J Med Chem. 2018;143:1277–1300.
  • Zhang X, Zegar T, Weiser T, et al. Characterization of a dual BET/HDAC inhibitor for treatment of pancreatic ductal adenocarcinoma. Int J Cancer. 2020;147(10):2847–2861.
  • Mokhtari RB, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022–38043.
  • Berman HM, Battistuz T, Bhat TN, et al. The protein data bank. Acta Crystallogr. Sect. D Biol. Crystallogr. 2002.
  • Liu Z, Chen H, Wang P, et al. Discovery of orally bioavailable chromone derivatives as potent and Selective BRD4 inhibitors: scaffold hopping, optimization, and pharmacological evaluation. J Med Chem. 2020;63(10):5242–5256.
  • Finnin MS, Donigian JR, Cohen A, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999;401(6749):188–193.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612.
  • Kusumaningrum S, Budianto E, Kosela S, et al. The molecular docking of 1,4-naphthoquinone derivatives as inhibitors of Polo-like kinase 1 using Molegro virtual docker. J. Appl. Pharm. Sci. 2014.
  • Thomsen R, Christensen MH. Moldock:  a new technique for high-accuracy molecular docking. J Med Chem. 2006;49(11):3315–3321.
  • Allouche A. Software news and updates Gabedit—a graphical user interface for computational chemistry softwares. J Comput Chem. 2012;32:174–182.
  • Trott O, Olson A. Autodock vina: improving the speed and accuracy of docking. J Comput Chem. 2010;31(2):455–461.
  • Madhavi Sastry G, Adzhigirey M, Day T, et al. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27(3):221–234.
  • Mhlongo NN, Ebrahim M, Skelton AA, et al. Dynamics of the thumb-finger regions in a GH11 xylanase bacillus circulans: comparison between the Michaelis and covalent intermediate. RSC Adv. 2015;5(100):82381–82394.
  • Ramharack P, Oguntade S, Soliman MES. Delving into Zika virus structural dynamics-a closer look at NS3 helicase loop flexibility and its role in drug discovery. RSC Adv. 2017;7(36):22133–22144.
  • Case DA, Walker RC, Cheatham TE, et al. (2018). Amber 2018. University of California, San Francisco; 2018, 1–923. Available from: http://ambermd.org/doc12/Amber18.pdf.
  • Wang J, Wolf RM, Caldwell JW, et al. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–1174.
  • Grest GS, Kremer K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys Rev A. 1986;33(5):3628–3631.
  • Berendsen HJC, Postma JPM, Van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–3690.
  • Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977;23(3):327–341.
  • Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9(7):3084–3095.
  • Seifert E. Originpro 9.1: scientific data analysis and graphing software – software review. J. Chem. Inf. Model. 2014;54(5):1552–1552.
  • Abdullahi M, Olotu FA, Soliman ME. Dynamics of allosteric modulation of lymphocyte function associated antigen-1 closure-open switch: unveiling the structural mechanisms associated with outside-in signaling activation. Biotechnol Lett. 2017;39(12):1843–1851.
  • Olotu FA, Soliman MES. From mutational inactivation to aberrant gain-of-function: unraveling the structural basis of mutant p53 oncogenic transition. J Cell Biochem. 2018;119(3):2646–2652.
  • Wan H, Hu JP, Tian XH, et al. Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d. Phys Chem Chem Phys. 2013;15(4):1241–1251. Available from: http://xlink.rsc.org/?DOI=C2CP41388D.
  • Chang S, Hu JP, Lin PY, et al. Substrate recognition and transport behavior analyses of amino acid antiporter with coarse-grained models. Mol Biosyst. 2010;6(12):2430–2438. Available from: http://xlink.rsc.org/?DOI=c005266c.
  • Fakhar Z, Govender T, Maguire GEM, et al. Differential flap dynamics in l,d-transpeptidase2 from mycobacterium tuberculosis revealed by molecular dynamics. Mol Biosyst. 2017;13(6):1223–1234. Available from: http://xlink.rsc.org/?DOI=C7MB00110J.
  • David CC, Jacobs DJ. Principal component analysis: a method for determining the essential dynamics of proteins. Protein Dynamics. 2014: 193–226. Available from: http://link.springer.com/https://doi.org/10.1007/978-1-62703-658-0_11.
  • Levy RM, Srinivasan AR, Olson WK, et al. Quasi-harmonic method for studying very low frequency modes in proteins. Biopolymers. 1984;23(6):1099–1112. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/bip.360230610.
  • Chen J, Wang J, Zhu W. Binding modes of three inhibitors 8CA, F8A and I4A to A-FABP studied based on molecular dynamics simulation. PLoS One. 2014;9(6):e99862. Available from: https://dx.plos.org/https://doi.org/10.1371/journal.pone.0099862.
  • Ichiye T, Karplus M. Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins Struct Funct Genet. 1991;11(3):205–217. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/prot.340110305.
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33–38. Available from: https://linkinghub.elsevier.com/retrieve/pii/0263785596000185.
  • Hou T, Wang J, Li Y, et al. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf. Model. 2011;51(1):69–82.
  • Homeyer N, Gohlke H. Free energy calculations by the Molecular Mechanics Poisson-Boltzmann surface Area method. Mol Inform. 2012;31(2):114–122.
  • Fornili A, Autore F, Chakroun N, et al. Protein-water interactions in MD simulations: POPS/POPSCOMP solvent accessibility analysis, solvation forces and hydration sites. Methods Mol Biol. 2012;819:375–392. Available from: http://link.springer.com/https://doi.org/10.1007/978-1-61779-465-0_23.
  • Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015;10(5):449–461. Available from: http://www.tandfonline.com/doi/full/https://doi.org/10.1517/17460441.2015.1032936.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.