403
Views
2
CrossRef citations to date
0
Altmetric
Articles

First-principles characterisation and comparison of clean, hydrated, and defect α-Al2O3 and α-Fe2O3 (110) surfaces

, ORCID Icon, , &
Pages 247-263 | Received 16 Apr 2021, Accepted 14 Nov 2021, Published online: 16 Dec 2021

References

  • Brown GE, Henrich VE, Casey WH, et al. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 1999;99(1):77–174.
  • Al-Abadleh HA, Grassian VH. Oxide surfaces as environmental interfaces. Surf. Sci. Rep. 2003;52(3):63–161.
  • Oelkers EH, Gislason SR, Matter J. Mineral carbonation of CO2. Elements. 2008;4(5):333–337.
  • Kappler A, Straub KL. Geomicrobiological cycling of iron. Rev. Mineral. Geochem. 2005;59(1):85–108.
  • Brown GE, Parks GA. Sorption of trace elements on mineral surfaces: Modern perspectives from spectroscopic studies, and comments on sorption in the marine environment. Int. Geol. Rev. 2001;43(11):963–1073.
  • Luthy RG, Aiken GR, Brusseau ML, et al. Sequestration of hydrophobic organic contaminants by geosorbents. Environ. Sci. Technol.. 1997;31(12):3341–3347.
  • Traina SJ, Laperche V. Contaminant bioavailability in soils, sediments, and aquatic environments. Proc. Natl. Acad. Sci. 1999;96(7):3365.
  • Gadd GM. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology. 2010;156(3):609–643.
  • Hiemstra T, Van Riemsdijk WH. On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides. J. Colloid Interface Sci. 2006;301(1):1–18.
  • Henderson MA. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 2002;46(1):1–308.
  • Kelber JA. Alumina surfaces and interfaces under non-ultrahigh vacuum conditions. Surf. Sci. Rep. 2007;62(7):271–303.
  • Bargar JR, Brown GE, Parks GA. Surface complexation of Pb(II) at oxide-water interfaces: I. XAFS and bond-valence determination of mononuclear and polynuclear Pb(II) sorption products on aluminum oxides. Geochim. Cosmochim. Acta. 1997;61(13):2617–2637.
  • Fenter P, Sturchio NC. Mineral–water interfacial structures revealed by synchrotron X-ray scattering. Prog. Surf. Sci. 2004;77(5):171–258.
  • Harmon KJ, Chen Y, Bylaska EJ, et al. Insights on the alumina–water interface structure by direct comparison of density functional simulations with X-ray reflectivity. J. Phys. Chem. C. 2018;122(47):26934–26944.
  • Bancroft GM, Brown JR, Fyfe WS. Advances in, and applications of, X-ray photoelectron spectroscopy (ESCA) in mineralogy and geochemistry. Chem. Geol. 1979;25(3):227–243.
  • Kelly DH SD, Ravel B. Analysis of soils and minerals using X-ray Absorption spectroscopy. In: AL Ulery LRD, editor. Methods of soil analysis part 5—mineralogical Methods. Madison, WI: Soil Science Society of America, Inc; 2008. p. 387–463.
  • Brown GE, Parks GA, Bargar JR, et al. Use of X-ray Absorption Spectroscopy To Study Reaction Mechanisms at Metal Oxide—Water Interfaces. Mineral-Water Interfacial Reactions. ACS Symposium Series. Vol. 715: American Chemical Society; 1999. p. 14-36.
  • Trainor TP, Eng PJ, Brown GE, et al. Crystal truncation rod diffraction study of the α-Al2O3 (11̄02) surface. Surf. Sci. 2002;496(3):238–250.
  • Marmier A, Parker SC. Ab initio morphology and surface thermodynamics of α-Al2O3. Phys. Rev. B. 2004;69(11):115409.
  • Trainor TP, Chaka AM, Eng PJ, et al. Structure and reactivity of the hydrated hematite (0001) surface. Surf. Sci. 2004;573(2):204–224.
  • Catalano JG, Park C, Zhang Z, et al. Termination and water adsorption at the α-Al2O3 (012)−aqueous solution interface. Langmuir. 2006;22(10):4668–4673.
  • Tanwar KS, Catalano JG, Petitto SC, et al. Hydrated α-Fe2O3(11̄02) surface structure: Role of surface preparation. Surf. Sci. 2007;601(12):L59–L64.
  • Hass KC, Schneider WF, Curioni A, et al. The chemistry of water on alumina surfaces: Reaction dynamics from first principles. Science. 1998;282(5387):265.
  • Corum KW, Huang X, Bennett JW, et al. Systematic Density Functional Theory study of the structural and electronic properties of constrained and fully relaxed (001) surfaces of alumina and hematite. Mol. Simul. 2017;43(5-6):406–419.
  • Mason SE, Iceman CR, Tanwar KS, et al. Pb(II) adsorption on isostructural hydrated alumina and hematite (0001) surfaces: A DFT study. J. Phys. Chem. C. 2009;113(6):2159–2170.
  • Catalano JG, Trainor TP, Eng PJ, et al. CTR diffraction and grazing-incidence EXAFS study of U(VI) adsorption onto α-Al2O3 and α-Fe2O3 (11̄02) surfaces. Geochim. Cosmochim. Acta. 2005;69(14):3555–3572.
  • Wang Y, Persson P, Michel FM, et al. Comparison of isoelectric points of single-crystal and polycrystalline α-Al2O3 and α-Fe2O3 surfaces. Am. Mineral. 2016;101(10):2248–2259.
  • Eng PJ, Trainor TP, Brown Jr GE, et al. Structure of the hydrated α-Al2O3 (0001) surface. Science. 2000;288(5468):1029.
  • Kraushofer F, Jakub Z, Bichler M, et al. Atomic-scale structure of the hematite α-Fe2O3(11̅02) “R-Cut” surface. J. Phys. Chem. C. 2018;122(3):1657–1669.
  • Wang X-G, Chaka A, Scheffler M. Effect of the environment on α-Al2O3 (0001) surface structures. Phys. Rev. Lett. 2000;84(16):3650–3653.
  • Mason SE, Iceman CR, Trainor TP, et al. Density Functional Theory study of clean, hydrated, and defective alumina (11̄02) surfaces. Phys. Rev. B. 2010;81(12):125423.
  • Lo CS, Tanwar KS, Chaka AM, et al. Density Functional Theory study of the clean and hydrated hematite (11̄02) surfaces. Phys Rev B. 2007;75(7):075425.
  • Tanwar KS, Lo CS, Eng PJ, et al. Surface diffraction study of the hydrated hematite (11̄02) surface. Surf. Sci. 2007;601(2):460–474.
  • Hazen RM, Sverjensky DA. Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb Perspect Biol. 2010;2(5):a002162–a002162.
  • Bargar JR, Towle SN, Brown GE, et al. XAFS and bond-valence determination of the structures and compositions of surface functional groups and Pb(II) and Co(II) sorption products on single-crystal α-Al2O3. J. Colloid Interface Sci. 1997;185(2):473–492.
  • Hiemstra T, Venema P, Riemsdijk WHV. Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: The bond valence principle. J Colloid Interface Sci. 1996;184(2):680–692.
  • Hiemstra T, Van Riemsdijk WH, Bolt GH. Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approach: I. Model description and evaluation of intrinsic reaction constants. J Colloid Interface Sci. 1989;133(1):91–104.
  • Pauling L. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 1929;51(4):1010–1026.
  • Brown ID. Recent developments in the bond valence model of inorganic bonding. Phys. Chem. Miner. 1987;15(1):30–34.
  • Bargar JR, Brown GE, Parks GA. Surface complexation of Pb(II) at oxide-water interfaces: II. XAFS and bond-valence determination of mononuclear Pb(II) sorption products and surface functional groups on iron oxides. Geochim. Cosmochim. Acta. 1997;61(13):2639–2652.
  • Towle SN, Bargar JR, Brown GE, et al. Sorption of Co(II) on Metal Oxide Surfaces: II. Identification of Co(II)(aq) adsorption sites on the (0001) and (1102) surfaces of α-Al2O3 by Grazing-Incidence XAFS spectroscopy. J. Colloid Interface Sci. 1999;217(2):312–321.
  • Qiu C, Majs F, Eng PJ, et al. In situ structural study of the surface complexation of lead(II) on the chemically mechanically polished hematite (11̄02) surface. J. Colloid Interface Sci. 2018;524:65–75.
  • Ruberto C, Yourdshahyan Y, Lundqvist BI. Surface properties of metastable alumina: A comparative study of κ- and α-Al2O3. Phys. Rev. B. 2003;67(19):195412.
  • Verdozzi C, Jennison DR, Schultz PA, et al. Sapphire (0001) surface, clean and with d-metal overlayers. Phys. Rev. Lett.. 1999;82(4):799–802.
  • Toofan J, Watson PR. The termination of the α-Al2O3 (0001) surface: A LEED crystallography determination. Surf. Sci. 1998;401(2):162–172.
  • Manassidis I, De Vita A, Gillan MJ. Structure of the (0001) surface of α-Al2O3 from first principles calculations. Surf. Sci. 1993;285(3):L517–L521.
  • Eggleston CM, Hochella MF. The structure of hematite (001) surfaces by scanning tunneling microscopy: Image interpretation, surface relaxation, and step structure. Am. Mineral. 1992;77(9-10):911–922.
  • Bargar JR, Trainor TP, Fitts JP, et al. In situ Grazing-Incidence extended X-ray Absorption fine structure study of Pb(II) chemisorption on hematite (0001) and (11̄02) surfaces. Langmuir. 2004;20(5):1667–1673.
  • Huang X, Hou X, Zhang X, et al. Facet-dependent contaminant removal properties of hematite nanocrystals and their environmental implications. Environ. Sci. Nano. 2018;5(8):1790–1806.
  • Noerpel MR, Lee SS, Lenhart JJ. X-ray analyses of lead adsorption on the (001), (110), and (012) hematite surfaces. Environ. Sci. Technol. 2016;50(22):12283–12291.
  • Catalano JG, Fenter P, Park C. Interfacial water structure on the (012) surface of hematite: Ordering and reactivity in comparison with corundum. Geochim. Cosmochim. Acta. 2007;71(22):5313–5324.
  • Mackrodt WC, Davey RJ, Black SN, et al. The morphology of α-Al2O3 and α-Fe2O3: The importance of surface relaxation. J. Cryst. Growth. 1987;80(2):441–446.
  • Catalano JG, Fenter P, Park C. Water ordering and surface relaxations at the hematite (110)–water interface. Geochim. Cosmochim. Acta. 2009;73(8):2242–2251.
  • Catalano JG. Relaxations and interfacial water ordering at the corundum (110) surface. J. Phys. Chem. C. 2010;114(14):6624–6630.
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965;140(4A):A1133–A1138.
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964;136(3B):B864–B871.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77(18):3865–3868.
  • Monkhorst HJ, Pack JD. Special points for brillouin-zone integrations. Phys. Rev. B. 1976;13(12):5188–5192.
  • Brese NE, O'Keeffe M. Bond-valence parameters for solids. Acta Crystallogr. B. 1991;47(2):192–197.
  • Corum WK, Abbaspour Tamijani A, Mason ES. Density Functional Theory study of arsenate adsorption onto alumina surfaces. Minerals. 2018;8(3):91.
  • Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990;92(1):508–517.
  • Delley B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000;113(18):7756–7764.
  • Delley B. DMol, a standard tool for density functional calculations: Review and advances. In: Seminario JM, Politzer P, editors. Theoretical and Computational Chemistry. Vol. 2. Amsterdam, Netherlands: Elsevier; 1995. p. 221–254.
  • Wang RB, Hellman A. Surface terminations of hematite (alpha-Fe2O3) exposed to oxygen, hydrogen, or water: Dependence on the Density Functional Theory methodology. J. Phys. Condens. Matter. 2018;30(27):275002.
  • Rollmann G, Rohrbach A, Entel P, et al. First-principles calculation of the structure and magnetic phases of hematite. Phys. Rev. B. 2004;69(16):165107.
  • Si Y, Li M, Zhou Z, et al. Improved description of hematite surfaces by the SCAN functional. J. Chem. Phys. 2020;152(2):024706.
  • Huang X, Ramadugu SK, Mason SE. Surface-specific DFT + U approach applied to α-Fe2O3(0001). J. Phys. Chem. C. 2016;120(9):4919–4930.
  • Wang RB, Hellman A. Initial water adsorption on hematite (α-Fe2O3) (0001): A DFT + U study. J. Chem. Phys. 2018;148(9):094705.
  • Wang XG, Weiss W, Shaikhutdinov SK, et al. The hematite α-Fe2O3 (0001) surface: Evidence for domains of distinct chemistry. Phys. Rev. Lett.. 1998;81(5):1038–1041.
  • Tamijani AA, Salam A, de Lara-Castells MP. Adsorption of noble-gas atoms on the TiO2(110) surface: An ab initio-assisted study with van der waals-corrected DFT. J. Phys. Chem. C. 2016;120(32):18126–18139.
  • Reuter K, Stampf C, Scheffler M. Ab Initio Atomistic Thermodynamics and Statistical Mechanics of Surface Properties and Functions. Handbook of Materials Modeling. 2005.
  • Reuter K, Scheffler M. Composition, structure, and stability of RuO2 as a function of oxygen pressure. Phys. Rev. B. 2001;65(3):035406.
  • Rogal J, Reuter K. Ab initio atomistic thermodynamics for surfaces: A primer. In experiment, Modeling and simulation of gas-surface interactions for reactive flows in hypersonic flights. Educational Notes RTO-EN-AVT-142. 2007;2:18.
  • NIST-JANAF. Thermochemical Tables te, edited by J. Chase (American Chemical Society, Washington, DC, 1998).
  • Oxford GAE, Chaka AM. First-Principles calculations of clean, oxidized, and reduced β-MnO2 surfaces. J. Phys. Chem. C. 2011;115(34):16992–17008.
  • Oxford GAE, Chaka AM. Density Functional Theory study of the γ-MnOOH (010) surface: Response to oxygen and water partial pressures and temperature. Phys. Rev. B. 2011;84(20):205453.
  • Eck B, Kurtulus Y, Offermans W, et al. Atomistic simulations of solid-state materials based on crystal–chemical potential concepts: Applications for compounds, metals, alloys, and chemical reactions. J. Alloys Compd. 2002;338(1):142–152.
  • Grinberg I, Cooper VR, Rappe AM. Relationship between local structure and phase transitions of a disordered solid solution. Nature. 2002;419(6910):909–911.
  • Shin Y-H, Cooper VR, Grinberg I, et al. Development of a bond-valence molecular-dynamics model for complex oxides. Phys. Rev. B. 2005;71(5):054104.
  • Shin Y-H, Grinberg I, Chen IW, et al. Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature. 2007;449(7164):881–884.
  • Mason SE, Trainor TP, Chaka AM. Hybridization-reactivity relationship in Pb(II) adsorption on α-Al2O3-water interfaces: A DFT study. J. Phys. Chem. C. 2011;115(10):4008–4021.
  • Hoffmann R. A chemical and theoretical way to look at bonding on surfaces. Rev. Mod. Phys. 1988;60(3):601–628.
  • Bargar JR, Towle SN, Brown GE, et al. Outer-sphere Pb(II) adsorbed at specific surface sites on single crystal α-alumina. Geochim. Cosmochim. Acta. 1996;60(18):3541–3547.
  • Mason SE, Corum KW, Ramadugu SK. Fundamental insights about environmental interface reactivity from DFT calculations of geochemical model systems. Surf. Sci. 2015;631:48–56.
  • Ramadugu SK, Mason SE. DFT Study of antimony(V) oxyanion adsorption on α-Al2O3(11̅02). J. Phys. Chem. C. 2015;119(32):18149–18159.
  • Towns J, Cockerill T, Dahan M, et al. XSEDE: Accelerating scientific discovery. Comput. Sci. Eng. 2014;16(5):62–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.