354
Views
0
CrossRef citations to date
0
Altmetric
Articles

Electron–phonon coupling factor and electron heat capacity of 6H-SiC

, , , &
Pages 322-329 | Received 25 Mar 2021, Accepted 30 Nov 2021, Published online: 17 Dec 2021

References

  • Benyagoub A, Audren A. Mechanism of the swift heavy ion induced epitaxial recrystallization in predamaged silicon carbide. J Appl Phys. 2009;106(8):083516.
  • Heera V, Stoemenos J, Kögler R, et al. Amorphization and recrystallization of 6H-SiC by ion-beam irradiation. J Appl Phys. 1995;77:2999–3009.
  • Snead LL, Zinkle SJ, Hay JC, et al. Amorphization of SiC under ion and neutron irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms. 1998;141:123–132.
  • Sorieul S, Costantini JM, Gosmain L, et al. Raman spectroscopy study of heavy-ion-irradiated α-SiC. J Phys Condens Matter. 2006;18:5235–5251.
  • O’Connell JH, Skuratov VA, Sohatsky AS, et al. 1.2 MeV/amu Xe ion induced damage recovery in SiC. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms. 2014;326:337–340.
  • Devanathan R, Weber WJ, Diaz De La Rubia T. Computer simulation of a 10 keV Si displacement cascade in SiC. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms. 1998;141:118–122.
  • Farrell DE, Bernstein N, Liu WK. Thermal effects in 10 keV Si PKA cascades in 3C-SiC. J Nucl Mater. 2009;385:572–581.
  • Gao F, Du J, Bylaska EJ, et al. Ab initio atomic simulations of antisite pair recovery in cubic silicon carbide. Appl Phys Lett. 2007;90:4–7.
  • Chen N, Peng Q, Jiao Z, et al. Ab initio study of the stability of intrinsic and extrinsic Ag point defects in 3C-SiC. J Nucl Mater. 2018;510:596–602.
  • Audren A, Monnet I, Gosset D, et al. Effects of electronic and nuclear interactions in SiC. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms. 2009;267:976–979.
  • Zinkle SJ, Skuratov VA, Hoelzer DT. On the conflicting roles of ionizing radiation in ceramics. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms. 2002;191:758–766.
  • Benyagoub A, Audren A, Thomé L, et al. Athermal crystallization induced by electronic excitations in ion-irradiated silicon carbide. Appl Phys Lett. 2006;89:5–8.
  • Zhang Y, Sachan R, Pakarinen OH, et al. Ionization-induced annealing of pre-existing defects in silicon carbide. Nat Commun. 2015;6:1–7.
  • Debelle A, Thomé L, Monnet I, et al. Ionization-induced thermally activated defect-annealing process in SiC. Phys Rev Mater. 2019;3:1–11.
  • Wang X, Li J, Wang J, et al. Microstructure investigation of damage recovery in SiC by swift heavy ion irradiation. Mater Design Process Comm. 2019;1:e87.
  • Fleischer RL, Price PB, Walker RM. Ion explosion spike mechanism for formation of charged-particle tracks in solids. J Appl Phys. 1965;36:3645–3652.
  • Toulemonde M, Dufour C, Meftah A, et al. Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms. 2000;166:903–912.
  • Daraszewicz SL, Duffy DM. Extending the inelastic thermal spike model for semiconductors and insulators. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms. 2011;269:1646–1649.
  • Weber WJ, Duffy DM, Thomé L, et al. The role of electronic energy loss in ion beam modification of materials. Curr Opin Solid State Mater Sci. 2015;19:1–11.
  • Lin Z, Zhigilei LV, Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys Rev B Condens Matter Mater Phys. 2008;77:1–17.
  • Ullah MW, Sellami N, Leino A, et al. Electron-phonon coupling induced defect recovery and strain relaxation in Ni and equiatomic NiFe alloy. Comput Mater Sci. 2020;173:109394.
  • Zhao S, Osetsky Y, Barashev AV, et al. Frenkel defect recombination in Ni and Ni ‒ containing concentrated solid ‒ solution alloys. Acta Mater. 2019;173:184–194.
  • Zarkadoula E, Samolyuk G, Zhang Y, et al. Electronic stopping in molecular dynamics simulations of cascades in 3C–SiC. J Nucl Mater. 2020;540:152371.
  • Peterson R, Senesky D. Modeling of radiation-induced defect recovery in 3C-SiC under high field bias conditions. Comput Mater Sci. 2019;161:10–15.
  • Zarkadoula E, Zhang Y, Weber WJ. Molecular dynamics simulations of the response of pre-damaged SrTiO3 and KTaO3 to fast heavy ions. AIP Adv. 2020;10:015019.
  • Leino AA, Daraszewicz SL, Pakarinen OH, et al. Structural analysis of simulated swift heavy ion tracks in quartz. Nucl Inst Methods Phys Res B. 2014;326:289–292.
  • Young DA. Etching of radiation damage in lithium fluoride. Nature. 1958;182:375–377.
  • Zarkadoula E, Samolyuk G, Weber WJ. Effects of electron-phonon coupling and electronic thermal conductivity in high energy molecular dynamics simulations of irradiation cascades in nickel. Comput Mater Sci. 2019;162;156–161.
  • Levinshtein M, Rumyantsev S, Shur M. Properties of advanced semiconductor materials: GaN, AlN, InN, SiC, SiGe, BN. New York: John Wiley & Sons; 1994. p. 670–693.
  • Dufour C, Khomenkov V, Rizza G, et al. Ion-matter interaction: the three-dimensional version of the thermal spike model. Application to nanoparticle irradiation with swift heavy ions. J Phys D Appl Phys. 2012;45:065302.
  • Akkerman A, Murat M. Electron-phonon interactions in silicon: mean free paths, related distributions and transport characteristics. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms. 2015;350:49–54.
  • Roschke M, Schwierz F. Electron mobility models for 4H, 6H, and 3C SiC. IEEE Trans Electron Devices. 2001;48:1442–1447.
  • Monserrat B, Needs RJ. Comparing electron-phonon coupling strength in diamond, silicon, and silicon carbide: first-principles study. Phys Rev B Condens Matter Mater Phys. 2014;89:1–8.
  • Sjakste J, Vast N, Calandra M, et al. Wannier interpolation of the electron-phonon matrix elements in polar semiconductors: polar-optical coupling in GaAs. Phys Rev B Condens Matter Mater Phys. 2015;92:1–8.
  • Geballe TH. Electron-phonon coupling. Condens Matter Phys. 1987;7:35–46.
  • Daraszewicz SL, Giret Y, Tanimura H, et al. Determination of the electron-phonon coupling constant in tungsten. Appl Phys Lett. 2014;105:023112.
  • Akhiezer AI, Kaganov MI, Liubarskii GL. Ultrasonic absorption in metals. Soviet Physics. 1957;5(4):685–688.
  • Allen PB. Theory of thermal relaxation of electrons in metals. Phys Rev Lett. 1987;59:1460–1463.
  • McMillan WL. Transition temperature of strong-coupled superconductors. Phys Rev. 1968;167:331–344.
  • Sadasivam S, Chan MKY, Darancet P. Theory of thermal relaxation of electrons in semiconductors. Phys Rev Lett. 2017;119:1–32.
  • Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21:395502.
  • Qin G, Qin Z, Wang H, et al. Anomalously temperature-dependent thermal conductivity of monolayer GaN with large deviations from the traditional 1/T law. Phys Rev B. 2017;95:195416.
  • Ponce S, Margine ER, Verdi C, et al. EPW: electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput Phys Commun. 2016;209:116–133.
  • Leino AA, Daraszewicz SL, Pakarinen OH, et al. Atomistic two-temperature modelling of ion track formation in silicon dioxide. EPL. 2015;110(1):16004.
  • Pisarev VV, Starikov SV. Atomistic simulation of ion track formation in UO2. J Phys Condens Matter. 2014;26:475401.
  • Phillips CL, Magyar RJ, Crozier PS. A two-temperature model of radiation damage in α -quartz. J Chem Phys. 2010;133:144711.
  • Toulemonde M, Assmann W, Dufour C, et al. Experimental phenomena and thermal spike model description of ion tracks in amorphisable inorganic insulators. Ion Beam Sci Solved Unsolved Probl Mat Meddelelser. 2006;52:263–292.
  • Zhang Y, Xue H, Zarkadoula E, et al. Coupled electronic and atomic effects on defect evolution in silicon carbide under ion irradiation. Curr Opin Solid State Mater Sci. 2017;21:285–298.
  • Morrissey LS, Nakhla S. Considerations when calculating the mechanical properties of single crystals and bulk polycrystals from molecular dynamics simulations. Mol Simul. 2020;46:1433–1442.
  • Seaton MA, Todorov IT, Daraszewicz SL, et al. Domain decomposition of the two-temperature model in dl_poly_4. Mol Simul. 2018;47:180–187.
  • de Oliveira FC, Khani S, Maia JM, et al. Modified clustering algorithm for molecular simulation. Mol Simul. 2020;46:1453–1466.
  • Mozumder A. Track-core radius of charged particles at relativistic speed in condensed media. J Chem Phys. 1974;60:1145–1148.
  • Khara GS, Murphy ST, Daraszewicz SL, et al. The influence of the electronic specific heat on swift heavy ion irradiation simulations of silicon. J Phys Condens Matter. 2016;28:395201.
  • Toulemonde M, Assmann W, Dufour C, et al. Nanometric transformation of the matter by short and intense electronic excitation: experimental data versus inelastic thermal spike model. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms. 2012;277:28–39.
  • Scace RI, Slack GA. Solubility of carbon in silicon and germanium. J Chem Phys. 1959;30:1551–1555.
  • Sadler LY, Shamsuzzoha M. Response of silicon carbide to high-intensity laser irradiation in a high-pressure inert gas atmosphere. J Mater Res. 1997;12:147–160.
  • Benyagoub A, Audren A. Study of the damage produced in silicon carbide by high energy heavy ions. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms. 2009;267:1255–1258.
  • Foti G. Silicon carbide: from amorphous to crystalline material. Appl Surf Sci. 2001;184:20–26.
  • Zallen R. The physics of amorphous solids. Weinheim: Wiley-VCH Verlag GmbH; 2007.
  • Delhommelle J. Nonequilibrium systems. Mol Simul. 2016;42:1299.
  • Pacaud Y, Stoemenos J, Brauer G, et al. Radiation damage and annealing behaviour of Ge+-implanted SiC. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms. 1996;120:177–180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.