277
Views
0
CrossRef citations to date
0
Altmetric
Articles

Transport mechanisms and desalination performance of the PSF/UiO-66 thin-film composite membrane: a molecular dynamics study

, , &
Pages 427-437 | Received 19 Jul 2021, Accepted 19 Dec 2021, Published online: 20 Jan 2022

References

  • Ibrahim Q, Akbarzadeh R. A photocatalytic TiO2/graphene bilayer membrane design for water desalination: a molecular dynamic simulation. J Mol Model [Internet]. 2020;26:165. Available from: http://link.springer.com/10.1007/s00894-020-04422-4.
  • Shaffer DL, Werber JR, Jaramillo H, et al. Forward osmosis: where are we now? Desalination [Internet]. 2015;356:271–284. doi:10.1016/j.desal.2014.10.031.
  • Martin JT, Kolliopoulos G, Papangelakis VG. An improved model for membrane characterization in forward osmosis. J Memb Sci [Internet]. 2020;598:117668. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0376738819328029.
  • Itliong JN, Rey A, Villagracia C, et al. Bioresource technology investigation of reverse ionic diffusion in forward-osmosis-aided dewatering of microalgae: a molecular dynamics study. Bioresour Technol [Internet]. 2019;279:181–188. doi:10.1016/j.biortech.2019.01.109.
  • Mukherjee R, Bhunia P, De S. Long term filtration modelling and scaling up of mixed matrix ultrafiltration hollow fiber membrane: a case study of chromium(VI) removal. J Memb Sci [Internet]. 2019;570-571:204–214. doi:10.1016/j.memsci.2018.10.026.
  • Gulied M, Al Nouss A, Khraisheh M, et al. Modeling and simulation of fertilizer drawn forward osmosis process using Aspen Plus-MATLAB model. Sci Total Environ [Internet]. 2020;700:134461. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969719344523.
  • Achilli A, Cath TY, Childress AE. Power generation with pressure retarded osmosis: an experimental and theoretical investigation. J Memb Sci. 2009;343:42–52.
  • Mulder M. Basic principles of membrane technology [Internet]. Dordrecht: Springer Netherlands; 1996. doi:10.1007/978-94-009-1766-8.
  • Gu B, Kim DY, Kim JH, et al. Mathematical model of flat sheet membrane modules for FO process: plate-and-frame module and spiral-wound module. J Memb Sci. 2011;379:403–415.
  • Attarde D, Jain M, Chaudhary K, et al. Osmotically driven membrane processes by using a spiral wound module – modeling, experimentation and numerical parameter estimation. Desalination [Internet]. 2015;361:81–94. doi:10.1016/j.desal.2015.01.025.
  • Attarde D, Jain M, Gupta SK. Modeling of a forward osmosis and a pressure-retarded osmosis spiral wound module using the Spiegler-Kedem model and experimental validation. Sep Purif Technol [Internet]. 2016;164:182–197. doi:10.1016/j.seppur.2016.03.039.
  • Banchik LD, Weiner AM, Al-Anzi B, et al. System scale analytical modeling of forward and assisted forward osmosis mass exchangers with a case study on fertigation. J Memb Sci [Internet]. 2016;510:533–545. doi:10.1016/j.memsci.2016.02.063.
  • Zhang Y, Mu T, Huang M, et al. Nanofiber composite forward osmosis (NCFO) membranes for enhanced antibiotics rejection: fabrication, performance, mechanism, and simulation. J Memb Sci [Internet]. 2020;595:117425. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0376738819316965.
  • Frenkel D, Smit B, Tobochnik J, et al. Understanding molecular simulation. Comput Phys [Internet]. 1997;11:351. Available from: http://scitation.aip.org/content/aip/journal/cip/11/4/10.1063/1.4822570.
  • Gogoi A, Anki Reddy K, Senthilmurugan S, et al. Dehydration of acetic acid using layered graphene oxide (GO) membrane through forward osmosis (FO) process: a molecular dynamics study. Mol Simul [Internet]. 2020;46:1500–1508. doi:10.1080/08927022.2020.1849684.
  • Yang F, Efome JE, Rana D, et al. Metal-organic frameworks supported on nanofiber for desalination by direct contact membrane distillation. ACS Appl Mater Interfaces. 2018;10:11251–11260.
  • Maina JW, Schütz JA, Grundy L, et al. Inorganic nanoparticles/metal organic framework hybrid membrane reactors for efficient photocatalytic conversion of CO2. ACS Appl Mater Interfaces. 2017;9:35010–35017.
  • Li Y, Wee LH, Volodin A, et al. Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method. Chem Commun [Internet]. 2015;51:918–920. Available from: http://xlink.rsc.org/?DOI=C4CC06699E.
  • Xu Y, Gao X, Wang X, et al. Highly and stably water permeable thin film nanocomposite membranes doped with MIL-101 (Cr) nanoparticles for reverse osmosis application. Materials (Basel) [Internet]. 2016;9:870. Available from: http://www.mdpi.com/1996-1944/9/11/870.
  • Liu S, Cao X, Wang H, et al. Zwitterionic polymers functionalised nanoporous graphene for water desalination: a molecular dynamics study. Mol Simul [Internet]. 2018;44:349–357. doi:10.1080/08927022.2017.1383988.
  • Kebria MRS, Rahimpour A, Bakeri G, et al. Experimental and theoretical investigation of thin ZIF-8/chitosan coated layer on air gap membrane distillation performance of PVDF membrane. Desalination [Internet]. 2019;450:21–32. doi:10.1016/j.desal.2018.10.023.
  • Sturluson A, Huynh MT, Kaija AR, et al. The role of molecular modelling and simulation in the discovery and deployment of metal-organic frameworks for gas storage and separation. Mol Simul [Internet]. 2019;45:1082–1121. doi:10.1080/08927022.2019.1648809.
  • Gupta KM, Qiao Z, Zhang K, et al. Seawater pervaporation through zeolitic imidazolate framework membranes: atomistic simulation study. ACS Appl Mater Interfaces. 2016;8:13392–13399.
  • Lindahl E, Abraham MJ, Berk H, et al. GROMACS 2019.4 manual. GROMACS Doc; 2019.
  • Gupta KM, Zhang K, Jiang J. Water desalination through zeolitic imidazolate framework membranes: significant role of functional groups. Langmuir. 2015;31:13230–13237.
  • Wu HC, Yoshioka T, Nakagawa K, et al. Water transport and ion rejection investigation for application of cyclic peptide nanotubes to forward osmosis process: a simulation study. Desalination [Internet]. 2017;424:85–94. doi:10.1016/j.desal.2017.09.008.
  • Wang S, Morris W, Liu Y, et al. Surface-specific functionalization of nanoscale metal-organic frameworks. Angew Chemie Int Ed [Internet]. 2015;54:14738–14742. doi:10.1002/anie.201506888.
  • He Y, Tang YP, Ma D, et al. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal. J Memb Sci [Internet]. 2017;541:262–270. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0376738817309134.
  • Liu X, Demir NK, Wu Z, et al. Highly water-stable zirconium metal–organic framework uio-66 membranes supported on alumina hollow fibers for desalination. J Am Chem Soc [Internet]. 2015;137:6999–7002. doi:10.1021/jacs.5b02276.
  • Devautour-Vinot S, Maurin G, Serre C, et al. Structure and dynamics of the functionalized MOF type UiO-66(Zr): NMR and dielectric relaxation spectroscopies coupled with DFT calculations. Chem Mater. 2012;24:2168–2177.
  • Mu T, Xi Y, Huang M, et al. Search for optimal monomers for fabricating active layers in thin-film composite osmosis membranes by conceptual density functional theory. J Mol Model [Internet]. 2020;26:334. doi:10.1007/s00894-020-04578-z.
  • Zhang N, Chen S, Yang B, et al. Effect of hydrogen-bonding interaction on the arrangement and dynamics of water confined in a polyamide membrane: a molecular dynamics simulation. J Phys Chem B. 2018;122:4719–4728.
  • Abbott LJ, Hart KE, Colina CM. Polymatic: a generalized simulated polymerization algorithm for amorphous polymers. Theor Chem Acc [Internet]. 2013;132:1334. doi:10.1007/s00214-013-1334-z.
  • Bayly CI, Cieplak P, Cornell W, et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem [Internet]. 1993;97:10269–10280. doi:10.1021/j100142a004.
  • Chen S, Wang H, Zhang J, et al. Effect of side chain on the electrochemical performance of poly (ether ether ketone) based anion-exchange membrane: a molecular dynamics study. J Memb Sci [Internet]. 2020;605:118105. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0376738820306839.
  • Schmidt MW, Baldridge KK, Boatz JA, et al. General atomic and molecular electronic structure system. J Comput Chem [Internet]. 1993;14:1347–1363. doi:10.1002/jcc.540141112.
  • Alex A. Granovsky. Firefly version 8.
  • Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem [Internet]. 2012;33:580–592. doi:10.1002/jcc.22885.
  • Rovaletti A, Greco C, Ryde U. QM/MM study of the binding of H2 to MoCu CO dehydrogenase: development and applications of improved H2 van der Waals parameters. J Mol Model [Internet]. 2021;27:68. doi:10.1007/s00894-020-04655-3.
  • Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem [Internet]. 2005;26:1701–1718. doi:10.1002/jcc.20291.
  • O’Boyle NM, Banck M, James CA, et al. Open babel: an open chemical toolbox. J Cheminform [Internet]. 2011;3:33. doi:10.1186/1758-2946-3-33.
  • Garberoglio G. OBGMX: a web-based generator of GROMACS topologies for molecular and periodic systems using the universal force field. J Comput Chem [Internet]. 2012;33:2204–2208. doi:10.1002/jcc.23049.
  • Skyner RE, McDonagh JL, Groom CR, et al. A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys Chem Chem Phys [Internet]. 2015;17:6174–6191. Available from: http://xlink.rsc.org/?DOI=C5CP00288E.
  • Chu CQ, Zhao HT, Qi YY, et al. Density functional theory studies on hydroxylamine mechanism of cyclohexanone ammoximation on titanium silicalite-1 catalyst. J Mol Model [Internet]. 2013;19:2217–2224. doi:10.1007/s00894-013-1768-1.
  • Rapaport DC, Blumberg RL, McKay SR, et al. The art of molecular dynamics simulation. Comput Phys [Internet]. 1996;10:456. Available from: http://scitation.aip.org/content/aip/journal/cip/10/5/10.1063/1.4822471.
  • Rahman A. Correlations in the motion of atoms in liquid argon. Phys Rev [Internet]. 1964;136:A405–A411. doi:10.1103/PhysRev.136.A405.
  • Zavitsas AA. Some opinions of an innocent bystander regarding the Hofmeister series. Curr Opin Colloid Interface Sci [Internet]. 2016;23:72–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S135902941630070X.
  • Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys [Internet]. 2005;7:3297. Available from: http://xlink.rsc.org/?DOI=b508541a.
  • Becke AD. A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys [Internet]. 1993;98:1372–1377. doi:10.1063/1.464304.
  • Pan S-F, Dong Y, Zheng Y-M, et al. Self-sustained hydrophilic nanofiber thin film composite forward osmosis membranes: preparation, characterization and application for simulated antibiotic wastewater treatment. J Memb Sci [Internet]. 2017;523:205–215. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0376738816317367.
  • Zheng Y, Huang M, Chen L, et al. Comparison of tetracycline rejection in reclaimed water by three kinds of forward osmosis membranes. Desalination. 2015;359:113–122.
  • Xu J, Tran TN, Lin H, et al. Removal of disinfection byproducts in forward osmosis for wastewater recycling. J Memb Sci [Internet]. 2018;564:352–360. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0376738818306987.
  • Xie M, Luo W, Guo H, et al. Trace organic contaminant rejection by aquaporin forward osmosis membrane: transport mechanisms and membrane stability. Water Res [Internet]. 2018;132:90–98. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0043135417310679.
  • Jang D, Jeong S, Jang A, et al. Relating solute properties of contaminants of emerging concern and their rejection by forward osmosis membrane. Sci Total Environ [Internet]. 2018;639:673–678. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969718317133.
  • Alturki AA, McDonald JA, Khan SJ, et al. Removal of trace organic contaminants by the forward osmosis process. Sep Purif Technol [Internet]. 2013;103:258–266. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1383586612005692.
  • Liu P, Zhang H, Feng Y, et al. Influence of spacer on rejection of trace antibiotics in wastewater during forward osmosis process. Desalination [Internet]. 2015;371:134–143. doi:10.1016/j.desal.2015.06.006.
  • Liu P, Zhang H, Feng Y, et al. Integrating electrochemical oxidation into forward osmosis process for removal of trace antibiotics in wastewater. J Hazard Mater [Internet]. 2015;296:248–255. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304389415003465.
  • Bilad MR, Qing L, Fane AG. Non-linear least-square fitting method for characterization of forward osmosis membrane. J Water Process Eng [Internet]. 2018;25:70–80. doi:10.1016/j.jwpe.2018.06.011.
  • Jung DH, Lee J, Kim DY, et al. Simulation of forward osmosis membrane process: effect of membrane orientation and flow direction of feed and draw solutions. Desalination [Internet]. 2011;277:83–91. doi:10.1016/j.desal.2011.04.001.
  • Zhang K, Nalaparaju A, Chen Y, et al. Biofuel purification in zeolitic imidazolate frameworks: the significant role of functional groups. Phys Chem Chem Phys [Internet]. 2014;16:9643–9655. Available from: http://xlink.rsc.org/?DOI=C4CP00739E.
  • Joung IS, Cheatham TE. Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. J Phys Chem B [Internet]. 2009;113:13279–13290. doi:10.1021/jp902584c.
  • Mu T, Zhang Y, Shi W, et al. A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: numerical simulation and experiment verification. Chemosphere [Internet]. 2021;269:128686. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0045653520328848.
  • Gogoi A, Reddy KA, Mondal P. Multilayer graphene oxide membrane in forward osmosis: molecular insights; 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.