390
Views
2
CrossRef citations to date
0
Altmetric
Articles

Estimation of diffusivity and intermolecular interaction strength of secondary and tertiary amine for CO2 absorption process by molecular dynamic simulation

, , , &
Pages 484-494 | Received 15 Sep 2021, Accepted 29 Dec 2021, Published online: 24 Jan 2022

References

  • Murshid G, Butt WA, Garg S. Investigation of thermophysical properties for aqueous blends of sarcosine with 1-(2-aminoethyl) piperazine and diethylenetriamine as solvents for CO2 absorption. J Mol Liq. 2019;278:584–591.
  • Yu Y, Zhang C, Sharif M, et al. Light to enhance CO2 capture by a flexible heterostructure. Chemical Engineering and Processing-Process Intensification, 2020: p. 108210.
  • Medesety P, Gade HM, Singh NK, et al. Highly selective carbon capture by novel graphene-carbon nanotube hybrids. Mol Simul. 2021;47(16):1326–1334.
  • Shaikh MS, Shariff AM, Bustam MA, et al. Measurement and prediction of physical properties of aqueous sodium L-prolinate and piperazine as a solvent blend for CO2 removal. Chem Eng Res Des. 2015;102:378–388.
  • Qin Z, Bhattacharya S, Sharif M, et al. Effects of char and volatiles extraction on the performance of dual Bed pyrolysis gasification system. Energy Fuels. 2019;33(6):4877–4889.
  • Geden O, Peters GP, Scott V. Targeting carbon dioxide removal in the European union. Clim Policy. 2019;19(4):487–494.
  • Wei W, Mushtaq Z, Sharif M, et al. Evaluating the coal rebound effect in energy intensive industries of China. Energy. 2020;207:118247.
  • Cormos C-C. Evaluation of power generation schemes based on hydrogen-fuelled combined cycle with carbon capture and storage (CCS). Int J Hydrogen Energy. 2011;36(5):3726–3738.
  • Wang M, Lawal A, Stephenson P, et al. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des. 2011;89(9):1609–1624.
  • Shao R, Stangeland A. Amines used in CO2 capture. Oslo: The Bellona Foundation; 2009.
  • Cullinane JT, Rochelle GT. Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine. Chem Eng Sci. 2004;59(17):3619–3630.
  • Zheng XY, Diao YF, He BS, et al. Carbon Dioxide Recovery from Flue Gases by Ammonia Scrubbing. In Greenhouse Gas Control Technologies: 6th International Conference. 2003. Elsevier.
  • Zhang T, Yu Y, Zhang Z. Effects of non-aqueous solvents on CO2 absorption in monoethanolamine: Ab initio calculations. Mol Simul. 2018;44(10):815–825.
  • Zhang S, Du M, Shao P, et al. Carbonic anhydrase enzyme-MOFs composite with a superior catalytic performance to promote CO2 absorption into tertiary amine solution. Environ Sci Technol. 2018;52(21):12708–12716.
  • Xiao M, Liu H, Gao H, et al. CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine. Appl Energy. 2019;235:311–319.
  • Luo X, Su L, Gao H, et al. Density, viscosity, Density, viscosity, and N2O solubility of aqueous 2-(methylamino)ethanol solution. J Chem Eng Data. 2017;62(1):129–140.
  • Muchan P, Saiwan C, Narku-Tetteh J, et al. Screening tests of aqueous alkanolamine solutions based on primary, secondary, and tertiary structure for blended aqueous amine solution selection in post combustion CO 2 capture. Chem Eng Sci. 2017;170:574–582.
  • Ahmad MZ, Hashim H, Mustaffa AA, et al. Design of energy efficient reactive solvents for post combustion CO2 capture using computer aided approach. J Clean Prod. 2018;176:704–715.
  • El Hadri N, Quang DV, Goetheer ELV, et al. Aqueous amine solution characterization for post-combustion CO2 capture process. Appl Energy. 2017;185:1433–1449.
  • Liu S, Gao H, He C, et al. Experimental evaluation of highly efficient primary and secondary amines with lower energy by a novel method for post-combustion CO2 capture. Appl Energy. 2019;233-234:443–452.
  • Polasek J, Bullin J. Selecting amines for sweetening units. Energy Progress. 1984;4(3):146–149.
  • Donaldson TL, Nguyen YN. Carbon dioxide reaction kinetics and transport in aqueous amine membranes. Ind Eng Chem Fundam. 1980;19(3):260–266.
  • Makrodimitri ZA, Unruh DJ, Economou IG. Molecular simulation of diffusion of hydrogen, carbon monoxide, and water in heavy n-alkanes. J Phys Chem B. 2011;115(6):1429–1439.
  • Chatterjee A. Calculation of self diffusion constant of pure water using molecular dynamic simulation. Bombay: Indian institute of technology; 2014.
  • Snijder ED, te Riele MJM, Versteeg GF, et al. Diffusion coefficients of several aqueous alkanolamine solutions. J Chem Eng Data. 1993;38(3):475–480.
  • Derks PWJ, Hamborg ES, Hogendoorn JA, et al. Densities, viscosities, and liquid diffusivities in aqueous piperazine and aqueous (piperazine +N-methyldiethanolamine) solutions. J Chem Eng Data. 2008;53(5):1179–1185.
  • Hikita H, Ishikawa H, Uku K, et al. Diffusivities of mono-, di-, and triethanolamines in aqueous solutions. J Chem Eng Data. 1980;25(4):324–325.
  • Azin R, Mahmoudy M, Raad SMJ, et al. Measurement and modeling of CO 2 diffusion coefficient in saline aquifer at reservoir conditions. Cent Eur J Eng. 2013;3(4):585–594.
  • Zeng H, Liu Y, Liu H. Adsorption and diffusion of CO2 and CH4 in covalent organic frameworks: an MC/MD simulation study. Mol Simul. 2018;44(15):1244–1251.
  • Wang Y, Han Q, Wen H. Theoretical discussion on the mechanism of binding CO2 by DBU and alcohol. Mol Simul. 2013;39(10):822–827.
  • Sun Y, Han S. Diffusion of N2, O2, H2S and SO2 in MFI and 4A zeolites by molecular dynamics simulations. Mol Simul. 2015;41(13):1095–1109.
  • Rukmani SJ, Kupgan G, Anstine DM, et al. A molecular dynamics study of water-soluble polymers: analysis of force fields from atomistic simulations. Mol Simul. 2019;45(4-5):310–321.
  • Wang J, Hou T. Application of molecular dynamics simulations in molecular property prediction II: diffusion coefficient. J Comput Chem. 2011;32(16):3505–3519.
  • Tsimpanogiannis IN, Moultos OA, Franco LFM, et al. Self-diffusion coefficient of bulk and confined water: a critical review of classical molecular simulation studies. Mol Simul. 2019;45(4-5):425–453.
  • Charpentier J-C. The triplet “molecular processes–product–process” engineering: the future of chemical engineering ? Chem Eng Sci. 2002;57(22-23):4667–4690.
  • Akkermans RL, Spenley NA, Robertson SH. Monte carlo methods in materials studio. Mol Simul. 2013;39(14-15):1153–1164.
  • Biovia. Material Studio, San Diego, USA, 2017 Version 8. 2020.
  • Charati SG, Stern SA. Diffusion of gases in silicone polymers:  molecular dynamics simulations. Macromolecules. 1998;31(16):5529–5535.
  • ChemSpider. ChemSpider Database, Royal Society Of Chemistry, 2020. [online]. 2020.
  • Rong L, Zhang G, Yang S. Molecular Simulation of Oxygen Diffusion in Polymers. 2010.
  • Masy E. Predicting the diffusivity of CO2 in substituted amines. 2013.
  • Einstein A. Zur elektrodynamik bewegter körper. Ann Phys. 1905;322(10):891–921.
  • Zeebe RE. On the molecular diffusion coefficients of dissolved CO2. HCO3-, and CO32- and their dependence on isotopic mass. Geochimica et Cosmochimica Acta. 2011;75(9):2483–2498.
  • Meunier M. Diffusion coefficients of small gas molecules in amorphous cis-1, 4-polybutadiene estimated by molecular dynamics simulations. J chem phys. 2005;123(13):134906.
  • Higashi H, Iwai Y, Arai Y. Calculation of self-diffusion and tracer diffusion coefficients near the critical point of carbon dioxide using molecular dynamics simulation. Ind Eng Chem Res. 2000;39(12):4567–4570.
  • Sharif M, Zhang T, Wu X, et al. Evaluation of CO2 absorption performance by molecular dynamic simulation for mixed secondary and tertiary amines. Int J Greenhouse Gas Control. 2020;97:103059.
  • Moultos OA, Tsimpanogiannis IN, Panagiotopoulos AZ, et al. Atomistic molecular dynamics simulations of CO2 diffusivity in H2O for a wide range of temperatures and pressures. J Phys Chem B. 2014;118(20):5532–5541.
  • Higashi H, Iwai Y, Uchida H, et al. Diffusion coefficients of aromatic compounds in supercritical carbon dioxide using molecular dynamics simulation. J Supercrit Fluids. 1998;13(1):93–98.
  • Coelho L, Oliveira J, Tavares F. Dense fluid self-diffusion coefficient calculations using perturbation theory and molecular dynamics. Braz J Chem Eng. 1999;16(3):319–329.
  • Penders-van Elk NJMC, Hamborg ES, Huttenhuis PJG, et al. Kinetics of absorption of carbon dioxide in aqueous amine and carbonate solutions with carbonic anhydrase. Int J Greenhouse Gas Control. 2013;12:259–268.
  • Sada E, Kumazawa H, Butt M. Solubilities of gases in aqueous solutions of amine. J Chem Eng Data. 1977;22(3):277–278.
  • Laddha SS, Diaz JM, Danckwerts PV. The N2O analogy: The solubilities of CO2 and N2O in aqueous solutions of organic compounds. Chemical Engineering Science, 1981. 36: p. 228-229.
  • Versteeg GF, Van Swaaij WP. Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions. J Chem Eng Data. 1988;33(1):29–34.
  • Ko J-J, Tsai T-C, Lin C-Y, et al. Diffusivity of nitrous oxide in aqueous alkanolamine solutions. J Chem Eng Data. 2001;46(1):160–165.
  • Wilke C, Chang P. Correlation of diffusion coefficients in dilute solutions. AIChE Journal. 1955;1(2):264–270.
  • Masiren EE, Harun N, W. Ibrahim WH, et al. Effect of temperature on diffusivity of monoethanolamine (MEA) on absorption process for CO2 capture. Int J Eng Tech Sci. 2018;3(1):43–51.
  • Mimura T, Suda T, Iwaki I, et al. Kinetics of reaction between carbon dioxide and sterically hindered amines for carbon dioxide recovery from power plant flue gases. Chem Eng Commun. 1998;170(1):245–260.
  • Ali SH. Kinetics of the reaction of carbon dioxide with blends of amines in aqueous media using the stopped-flow technique. Int J Chem Kinet. 2005;37(7):391–405.
  • Li J, Henni A, Tontiwachwuthikul P. Reaction kinetics of CO2 in aqueous ethylenediamine, ethyl ethanolamine, and diethyl monoethanolamine solutions in the temperature range of 298−313 K, using the stopped-flow technique. Ind Eng Chem Res. 2007;46(13):4426–4434.
  • Ciftja AF, Hartono A, Svendsen HF. Carbamate formation in aqueous - diamine - CO2 systems. Energy Procedia. 2013;37:1605–1612.
  • Idris Z, Eimer DA. Representation of CO2 absorption in sterically hindered amines. Energy Procedia. 2014;51:247–252.
  • Masiren E, Harun N, Ibrahim W, et al. Intermolecular Interaction of Monoethanolamine, Diethanolamine, Methyl diethanolamine, 2-Amino-2-methyl-1-propanol and Piperazine Amines in Absorption Process to Capture CO2 using Molecular Dynamic Simulation Approach. in The national Conference for Postgraduate Research 2016. 2016.
  • Rochelle GT. Amine scrubbing for CO2 capture. Science. 2009;325(5948):1652–1654.
  • Yu C, Huang C, Tan C. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res. 2012;12(5):745–769.
  • Kohl A, Nielsen R. Gas Purification, 5th Edition. United States of America 5th Edition ed. Houston (Texas): Gulf Professional Publishing; 1997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.