145
Views
2
CrossRef citations to date
0
Altmetric
Articles

The influence of Pb content on the interfacial free energy of solid Sn in eutectic Pb–Sn liquid mixtures using molecular dynamics simulations

, &
Pages 568-573 | Received 29 Sep 2021, Accepted 18 Jan 2022, Published online: 05 Feb 2022

References

  • Martin J, Martin J, Doherty R, et al. Stability of microstructure in metallic systems. 1997.
  • Eustathopoulos N, Nicholas M, Drevet B. Wettability at high temperatures. 1999.
  • Karma A, Rappel W-J. Phase-field model of dendritic sidebranching with thermal noise. Phys Rev E. 1999;60:3614–3625.
  • Kavousi S, Novak BR, Zaeem MA, et al. Combined molecular dynamics and phase field simulation investigations of crystal-melt interfacial properties and dendritic solidification of highly undercooled titanium. Comput Mater Sci. 2019;163:218–229.
  • Jones H. An evaluation of measurements of solid/liquid interfacial energies in metallic alloy systems by the groove profile method. Metall Mater Trans A. 2007;38:1563–1569.
  • Maraşli N, Hunt JD. Solid-liquid surface energies in the Al-CuAl2, Al-NiAl3 and Al-Ti systems. Acta Mater. 1996;44:1085–1096.
  • Hoyt JJ, Asta M, Karma A. Method for computing the anisotropy of the solid-liquid interfacial free energy. Phys Rev Lett. 2001;86:5530–5533.
  • Asta M, Hoyt JJ, Karma A. Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations. Phys Rev B – Condens Matter Mater Phys. 2002;66:1001011–1001014.
  • Morris JR, Napolitano RE. Developments in determining the anisotropy of solid-liquid interfacial free energy. JOM. 2004;56:40–44.
  • Asadi E, Asle Zaeem M. The anisotropy of hexagonal close-packed and liquid interface free energy using molecular dynamics simulations based on modified embedded-atom method. Acta Mater [Internet]. 2016 [cited 2019 Jun 26];107:337–344. Available from: https://www.sciencedirect.com/science/article/pii/S1359645416300428.
  • Broughton JQ, Gilmer GH. Molecular dynamics investigation of the crystal–fluid interface. VI. Excess surface free energies of crystal–liquid systems. J Chem Phys. 1986;84:5759–5768.
  • Morris JR. Complete mapping of the anisotropic free energy of the crystal-melt interface in Al. Phys Rev B. 2002;66:144104.
  • Karma A. Fluctuations in solidification. Phys Rev E. 1993;48:3441–3458.
  • Hoyt JJ, Asta M. Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag. Phys Rev B. 2002;65:214106.
  • Asadi E, Asle Zaeem M, Nouranian S, et al. Two-phase solid–liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method. Acta Mater. 2015;86:169–181.
  • Sun DY, Asta M, Hoyt JJ. Crystal-melt interfacial free energies and mobilities in fcc and bcc Fe. Phys Rev B. 2004;69:174103.
  • Asadi E, Zaeem MA, Baskes MI. Phase-field crystal model for Fe connected to MEAM molecular dynamics simulations.
  • Sun DY, Mendelev MI, Becker CA, et al. Crystal-melt interfacial free energies in hcp metals: a molecular dynamics study of Mg. Phys Rev B. 2006;73:024116.
  • Frolov T, Mishin Y. Solid-liquid interface free energy in binary systems: theory and atomistic calculations for the (110) Cu–Ag interface. J Chem Phys. 2009;131:054702.
  • Potter AA, Hoyt JJ. A molecular dynamics simulation study of the crystal–melt interfacial free energy and its anisotropy in the Cu–Ag–Au ternary system. J Cryst Growth. 2011;327:227–232.
  • Brailsford A, Wynblatt P. The dependence of Ostwald ripening kinetics on particle volume fraction. Acta Metall. 1979;27:489–497.
  • Voorhees PW. The theory of Ostwald ripening. J Stat Phys. 1985;38:231–252.
  • Alkemper J, Snyder VA, Akaiwa N, et al. Dynamics of late-stage phase separation: a test of theory. Phys Rev Lett. 1999;82:2725–2728.
  • Snyder V, Rowenhorst D, Voorhees P, et al. Coarsening in solid-liquid mixtures – a summary of results. 2001 Conf Exhib Int Sp Stn Util. Reston, Virigina: American Institute of Aeronautics and Astronautics; 2001.
  • Snyder VA, Alkemper J, Voorhees PW. The development of spatial correlations during Ostwald ripening: a test of theory. Acta Mater. 2000;48:2689–2701.
  • Etesami SA, Baskes MI, Laradji M, et al. Thermodynamics of solid Sn and PbSn liquid mixtures using molecular dynamics simulations. Acta Mater. 2018;161:320–330.
  • Daw MS, Baskes MI. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B. 1984;29:6443–6453.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool. Model Simul Mater Sci Eng. 2010;18:015012.
  • http://ovito.org/.
  • Etesami SA, Asadi E. Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method. J Phys Chem Solids [Internet]. 2018. [cited 2017 Nov 21];112:61–72. Available from: https://www.sciencedirect.com/science/article/pii/S0022369717312039
  • Asadi E, Asle Zaeem M, Nouranian S, et al. Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales. Phys Rev B [Internet]. 2015. [cited 2019 Jun 26];91:024105. Available from: https://link.aps.org/doi/https://doi.org/10.1103/PhysRevB.91.024105.
  • Asadi E, Asle Zaeem M. The anisotropy of hexagonal close-packed and liquid … - Google Scholar. Acta Mater. 2016;107:337–344.
  • Kotzé IA, Kuhlmann-Wilsdorf D. A theory of the interfacial energy between a crystal and the melt. Appl Phys Lett. 1966;9:96–98.
  • Camel D, Eustathopoulos N, Desré P. Chemical adsorption and temperature dependence of the solid-liquid interfacial tension of metallic binary alloys. Acta Metall. 1980;28:239–247.
  • Waseda Y, Miller WA. Calculation of the crystal-melt interfacial free energy from experimental radial distribution function data. Trans Jpn Inst Met. 1978;19:546–552.
  • Gündüz M, Hunt JD. The measurement of solid-liquid surface energies in the Al-Cu, Al-Si and Pb-Sn systems. Acta Metall. 1985;33:1651–1672.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.