99
Views
0
CrossRef citations to date
0
Altmetric
Articles

Experimental and density functional theory study on structure, vibrational and molecular characteristics of 2-chloro-5-methylpyrimidine and 2,4-dichloro-5-methylpyrimidine

, , , & ORCID Icon
Pages 1017-1030 | Received 30 Sep 2021, Accepted 28 Mar 2022, Published online: 08 Apr 2022

References

  • Srishailam K, Venkatram Reddy B, Ramana Rao G. Investigation of torsional potentials, hindered rotation, molecular structure and vibrational properties of some biphenyl carboxaldehydes using spectroscopic techniques and density functional formalism. J Mol Struct. 2019;1196:139–161.
  • Ravindranath L, Venkatram Reddy B. Theoretical and experimental study of torsional potentials, molecular structure (monomer and dimer), vibrational analysis and molecular characteristics of some dimethyl bipyridines. J Mol Struct. 2020;1200:127089.
  • Venkata Ramana Rao P, Srishailam K, Venkatram Reddy B, et al. Theoretical (DFT) and experimental (FT-IR & FT Raman) approach to investigate the molecular geometry and vibrational properties of 2, 5-and 2, 6-dihydroxytoluenes. J Mol Struct. 2021;1240:130617.
  • Brown DJ. Pyrimidines and their benzo derivatives, in comprehensive heterocyclic chemistry. In: AR Katritzky, CW Rees, Oxford: Pergamon Press; 1984.
  • Inoue M, Hashimoto K. Jpn. Kokai Tokyo Koho, Jp. (Japanese Patent No.) 03204877 [91,204,877]. Chem Abstr. 1992;116:6580z.
  • Goto K. Jpn. Kokai Tokyo Koho, Jp. (Japanese Patent No.) 03215488 [91,215,488]. Chem Abstr. 1992;116:128962w.
  • Goto K, Hashimoto K, Kanai K. Jpn. Kokai Tokyo Koho, Jp.(Japanese Patent No.) 63,168,685 [88,198,685]. Chem Abstr. 1989;110:23911b.
  • Santagati A, Modica M, Santagati M, et al. Chem Abstr. 1994;49:64, .1994;120:323518r.
  • Vou Borstel RW, Bamat MK, Hiltran BM. PCT int. Appl. WO. 690.11.15. Chem Abstr. 1996;124:250921n.
  • Da Settimo A, Da Settimo F, Marini AM, et al. Synthesis, DNA binding and in vitro antiproliferative activity of purinoquinazoline, pyridopyrimidopurine and pyridopyrimidobenzimidazole derivatives as potential antitumor agents. Eur J Med Chem. 1998;33:685–696.
  • Russo F, Romoeo G, Santagati NA, et al. Synthesis of new thienopyrimidobenzothiazoles and thienopyrimidobenzoxazoles with analgesic and antiinflammatory properties. Eur J Med Chem. 1994;29:569–578.
  • Sondhi SM, Singhal N, Verma RP, et al. Synthesis and antiinflammatoryand anticancer activity evaluation of some condensed pyrimidines. Monatshefte für Chemie. 2000;131:501–509.
  • Sondhi SM, Johar M, Singhal N, et al. Synthesis and anticancer, antiinflammatory, and analgesic activity evaluation of some sulfa drug and acridine derivatives. Monatshefte für Chemie. 2000;131:511–520.
  • Sondhi SM, Singhal N, Verma RP, et al. Synthsis of hemin and porphyrin derivatives and their evaluation for anticancer activity. Indian J Chem Sec B. 2001;40B:113–119.
  • Tang G, Kertesz DJ, Yang M, et al. Exploration of piperidine-4-yl-aminopyrimidines as HIV-1 reverse transcriptase inhibitors. N-phenyl derivatives with broad potency against resistant mutant viruses. Bioorg Med Chem Lett. 2010;20:6020–6023.
  • Gazivoda Kraljevic T, Krištafor S, Šuman L, et al. Synthesis, X-ray crystal structure study and antitumoral evaluations of 5,6-disubstituted pyrimidine derivatives. Bioorg Med Chem. 2010;18:2704–2712.
  • Szterner P, Amaral LMPF, Morais VMF, et al. Thermochemical study of dichloromethyl pyrimidine isomers. J Chem Thermodynaics. 2016;100:148–155.
  • Joshi BD. Structural, electronic and vibrational study of 4, 6-dichloro-5-methylpyrimidine: A DFT approach. J Institute Sci Tech. 2017;22(1):51–60.
  • Medjani M, Hamdouni N, Brihi O, et al. Crystal structure of 4,6-dichloro-5-methylpyrimidine. Acta Cryst. 2015;E71:o1073–o1074.
  • Furberg S, Grogaard J, Smedsrud B. Effect of substitution on pyrimidine. The crystal structures of pyrimidine and its 5-methyl, 2-chloro and 2-amino derivatives. Acta Chemica Scandinavica B. 1979;33:715–724.
  • Dennington R, Keith T, Millam J. Gauss View, Version 5.0. Semichem Inc., Shawnee Mission; 2009.
  • Frisch MJ. Gaussian 09, Revision B.01. Wallingford (CT): Gaussian, Inc.; 2010.
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–5652.
  • Lee C, Yang W, Parr RG. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–789.
  • Latajka Z, Person WB, Morokuma K. An ab initio calculation of the infrared spectrum and tautomerism of guanine. J Mol Struct (Theochem). 1986;135:253–266.
  • Kereztury G, Holly S, Besenyel G, et al. Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N,N-dimethylthiocarbamate. Spectrochim Acta Part A. 1993;49:2007–2026.
  • Kereztury G. In: Chalmers JM, Griffiths PR, editors. Raman spectroscopy: theory in hand book of vibrational spectroscopy, vol.1. New York: Wiley and sons Ltd; 2002. p. 71–87.
  • Rahut G, Pulay P. Transferable scaling factors for density functional derived vibrational force fields. J Phys Chem. 1995;99:3093–3100.
  • Pulay P, Fogarasi G, Pongor G, et al. Combination of theoretical Ab initio and experimental information to obtain reliable harmonic force constants. Scaled Quantum Mechanical (SQM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. J Am Chem Soc. 1983;105(24):7037–7047.
  • Arenas JF, Tocón IL, Otero JC, et al. Vibrational spectra of methylpyridines. J Mol Struct. 1999;476:139–150.
  • Fogarasi G, Zhou X, Tayler PW, et al. The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces. J Am Chem Soc. 1992;114:8191–8201.
  • Sundius T. Molvib - A flexible program for force field calculations. J Mol Struct. 1990;218:321–326.
  • Sundius T. Scaling of ab initio force fields by MOLVIB. Vib Spectrosc. 2002;29:89–95.
  • Glendening ED, Reed AE, Carpenter JE, et al. NBO Version 3.1, TCI. Madison: University of Wisconsin; 1998.
  • Paizs B, Fogarasi G, Pulay P. An efficient direct method for geometry optimization of large molecules in internal coordinates. J Chem Phys. 1998;109:6571–6576.
  • Steiner T. C-H···O hydrogen bonding in crystals. Crystallogr Rev. 2003;9:177–228.
  • Steiner T, Desiraju GR. Distinction between the weak hydrogen bond and the Van der Waals interaction. Chem Commun. 1998: 891–892.
  • Desiraju GR. C-H···O and other weak hydrogen bonds. from crystal engineering to virtual screening. Chem Commun. 2005: 2995–3001.
  • Biegler-König F, Schönbohm J. Update of the AIM2000-program for atoms in M molecules. J Comput Chem. 2002;23:1489–1494.
  • Wilson EB, Jr. The Normal modes and frequencies of vibration of the regular plane hexagon model of the benzene molecule. Phys Rev. 1934;45:706–714.
  • Prabavathi N, Senthil Nayaki N, Venkatram Reddy B. Molecular structure, vibrational spectra, natural bond orbital and thermodynamic analysis of 3,6-dichloro-4-methylpyridazine and 3,6-dichloropyridazine-4-carboxylic acid by dft approach. Spectrochim Acta A. 2015;136:1134–1148.
  • Ojha JK, Venkatram Reddy B, Ramana Rao G. Vibrational analysis and valence force field for nitrotoluenes, dimethylanilines and some substituted methylbenzenes. Spectrochim Acta A. 2012;96:632–643.
  • Parrish RM., Hohenstein EG, McMahon PL, et al. Quantum computation of electronic transitions using a variational Quantum eigensolver. Phy Rev Lett. 2019;122(1-6):230401.
  • Jacquemin D, Perpète EA, Ciofini I, et al. Accurate simulation of optical properties in dyes Acc. Chem Res. 2009;42:326–334.
  • Jacquemin D, Preat J, Wathelet V, et al. Thioindigo dyes: highly accurate visible spectra with TD-DFT. J Am Chem Soc. 2006;128:2072–2083.
  • Ciofini I, Adamo C. Accurate evaluation of valence and low-lying Rydberg states with standard time-dependent density functional theory. J Phys Chem A. 2007;111:5549–5556.
  • Maric D, Burrows JP. Application of a Gaussian Distribution Function to describe molecular UV-visible absorption continua .1. Theory, J Phys Chem A. 1996;100:8645–8659.
  • Maric D, Crowley JN, Burrows JP. Application of a Gaussian Distribution Function to describe molecular UV−Visible absorption continua. 2. The UV spectra of RO2• radicals. J Phys Chem A. 1997;101:2561–2567.
  • Bremond EAG, Kieffer J, Adamo C. A reliable method for fitting TD-DFT transitions to experimental UV–visible spectra. J Mol Struct (Theochem). 2010;954:52–56.
  • Jacquemin D, Perpète EA. Ab initio calculations of the colour of closed-ring diarylethenes: TD-DFT estimates for molecular switches chem. Phys Lett. 2006;429:147–152.
  • Preat J, Michaux C, Lewalle A, et al. Delocalisation in conjugated triazene chromophores: insights from theory chem. Phys Lett. 2008;451:37–42.
  • Scalmani G, Frisch MJ. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys. 2010;132:114110.
  • Fukui K. Role of frontier orbitals in chemical reactions. Science. 1982;218:747–754.
  • Koopmans TA. Ordering of wave functions and eigen energies of the individual electrons of an atom. Physica. 1933;1:104–113.
  • Choi CH, Kertez M. Conformational information from vibrational spectra of styrene, trans-stilbene, and cis-stilbene. J Phys Chem A. 1997;101:3823–3831.
  • Sinha L, Prasad O, Narayan V, et al. Raman, FT-IR spectroscopic analysis and first-order hyperpolarisability of 3-benzoyl-5-chlorouracil by first principles. J Mol Simul. 2011;37:153–163.
  • Lewis DFV, Ioannides C, Parke DV. Interaction of a series of nitriles with the alcohol-inducible isoform of P450: computer analysis of structure-activity relationships. Xenobiotica. 1994;24:401–408.
  • Kosar D, Albayrak C. Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino)methyl]phenol. Spectrochim Acta A. 2011;78:160–167.
  • Nakano M, Fujita H, Takahata M, et al. Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure-property relation in NLO responses of fractal antenna dendrimers. J Am Chem Soc. 2002;124:9648–9655.
  • Luque FJ, López JM, Orozco M. Perspective on “electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”. Theo Chem Accounts. 2000;103:343–345.
  • Scrocco E, Tomasi J. Topics in current chemistry, New concepts-II. New York. 1973.
  • Kalaiarasi N, Manivarman S. Synthesis, spectroscopic characterization, computational exploration Of 6-(2-(2, 4-dinitrophenylhydrazano)-tetrahydro-2- thioxopyrimidin-4(1h)-one. Oriental J Chem. 2017;33(1):304–317.
  • Politzer P, Murray JS. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc. 2002;108:134–142.
  • Herzberg G. Infrared and Raman spectra of polyatomic molecules. New York (NY): D. Van Nostrand; 1945.
  • Pitzer KS, Gwinn WD. Energy levels and thermodynamic functions for molecules with internal rotation: I. Rigid frame with attached tops. Mol Struct and Stat Thermodynamics. 1993: 33–46.
  • Ghahremanpour MM, Van Maaren PJ, Ditz JC, et al. Large-scale calculations of gas phase thermochemistry: enthalpy of formation, standard entropy, and heat capacity. J Chem Phys. 2016;145:114305.
  • Balachandran V, Karunakaran V. Quantum mechanical study of the structure and vibrational spectroscopic (FT-IR and FT-Raman), first-order hyperpolarizability, NBO and HOMO−LUMO studies of 4-bromo-3-nitroanisole. Spectrochim Acta, Part A. 2013;106:284–298.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.