182
Views
0
CrossRef citations to date
0
Altmetric
Articles

Theoretical study on aggregation-induced emission of new multi-layer 3D chiral molecules

, , , ORCID Icon, & ORCID Icon
Pages 1102-1111 | Received 20 Dec 2021, Accepted 16 Apr 2022, Published online: 02 May 2022

References

  • Huang GX, Wen RS, Wang ZM, et al. Novel chiral aggregation induced emission molecules: self-assembly, circularly polarized luminescence and copper (II) ion detection. Mater Chem Front. 2018;2:1884–1892.
  • Bhattacharjee S, Khan MI, Li XF, et al. Recent progress in asymmetric catalysis and chromatographic separation by chiral metal-organic frameworks. Catalysts. 2018;8:2073–4344.
  • Yutthalekha T, Wattanakit C, Lapeyre V, et al. Asymmetric synthesis using chiral-encoded metal. Nat Commun. 2016;7:12678.
  • Eliel EL, Wilen SH. Stereochemistry of organic compounds. New York: Wiley; 1994.
  • Sandoval CA, Ohkuma T, Muñiz K, et al. Mechanism of asymmetric hydrogenation of ketones catalyzed by BINAP/1,2-diamine-ruthenium(II) complexes. J Am Chem Soc. 2003;125:13490–13503.
  • Ding K, Han Z, Wang Z. Spiro skeletons: a class of privileged structure for chiral ligand design. Chem-Asian J. 2009;4:32–41.
  • Fu GC. Enantioselective nucleophilic catalysis with ‘planar-chiral’ heterocycles. Accounts Chem Res. 2000;33:412–420.
  • Zeraati M, Langley DB, Schofield P, et al. I-motif DNA structures are formed in the nuclei of human cells. Nat Chem. 2018;10:631–637.
  • Gong HR, Li J, Xu A, et al. An electron transfer path connects subunits of a mycobacterial respiratory supercomplex. Science. 2018;362:eaat8923.
  • Wu GZ, Liu YX, Yang Z, et al. Multilayer 3D chirality and its synthetic assembly. Research. 2019;2019:6717104.
  • Luo JD, Xie ZL, Lam JWY, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun. 2001;18:1740–1741.
  • Liu YX, Wu GZ, Yang Z, et al. Multi-layer 3D chirality: new synthesis, AIE and computational studies. Sci China Chem. 2020;63:692–698.
  • Wu GZ, Liu YX, Yang Z, et al. Enantioselective assembly of multi-layer 3D chirality. Natl Sci Rev. 2020;7:588–599.
  • Wu GZ, Liu YX, Yang Z, et al. Triple-columned and multiple-layered 3D polymers: design, synthesis, aggregation-induced emission (AIE), and computational study. Research. 2021;2021:3565791.
  • Wu G, Liu Y, Rouh H, et al. Asymmetric catalytic approach to multilayer 3D chirality. Chem-Eur J. 2021;27:8013–8020.
  • Förster T, Kasper K. Ein konzentrationsumschlag der fluoreszenz. Z Phys Chem. 1954;1:275–277.
  • Gao F, Dr Q, Xu ZZ, et al. Strong two-photon excited fluorescence and stimulated emission from an organic single crystal of an oligo (phenylene vinylene). Angew Chem. 2010;122:744–747.
  • Chen JW, Law CC W, Lam JWY, et al. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem Mater. 2003;15:1535–1546.
  • Choi S, Bouffard J, Kim YM. Aggregation-induced emission enhancement of a meso-trifluoromethyl BODIPY via J-aggregation. Chem Sci. 2014;5:751–755.
  • Mutai T, Sawatani H, Shida T, et al. Tuning of excited-state intramolecular proton transfer (ESIPT) fluorescence of imidazo[1,2-a]pyridine in rigid matrices by substitution effect. J Org Chem. 2013;78:2482–2489.
  • Bayat F, Homami SS, Monzavi A, et al. A combined molecular docking and molecular dynamics simulation approach to probing the host-guest interactions of Ataluren with natural and modified cyclodextrins. Mol Simulat. 2022;48:108–119.
  • Anbarasan PM, Arunkumar A, Shkir M. Computational investigations on efficient metal-free organic D- π -A dyes with different spacers for powerful DSSCs applications. Mol Simulat. 2022;48:140–149.
  • Han S, Xue X, Yu C, et al. Diffusion and reinforcement mechanism study of the effect of styrene/butadiene ratio on the high-temperature property of asphalt using molecular dynamics simulation. Mol Simulat. 2022;48:290–302.
  • Tamijani AA, Augustine LJ, Bjorklund JL, et al. First-principles characterisation and comparison of clean, hydrated, and defect α-Al2O3 and α-Fe2O3 (110) surfaces. Mol Simulat. 2022;48:247–263.
  • Huo F, Ding J, Tong J, et al. Ionic liquid-air interface probed by sum frequency generation spectroscopy and molecular dynamics simulation: influence of alkyl chain length and anion volume. Mol Simulat. 2021.
  • Liu W, Yang F, Zhang Y, et al. Thermal conductivity calculations of binary liquid organic mixtures by molecular dynamics simulation and its interpretation of microscopic heat transfer mechanism. Mol Simulat. 2021;47:1050–1058.
  • Wang HJ, Gong QQ, Wang G, et al. Deciphering the mechanism of aggregation-induced emission of a quinazolinone derivative displaying excited-state intramolecular proton-transfer properties: a QM, QM/MM, and MD study. J Chem Theory Comput. 2019;15:5440–5447.
  • Zhang YC, Ma YY, Zhang K, et al. Solid-state effect on luminescent properties of thermally activated delayed fluorescence molecule with aggregation induced emission: a theoretical perspective. Spectrochim Acta A. 2020;241:118634.
  • Zhang T, Jiang Y, Niu Y, et al. Aggregation effects on the optical emission of 1,1,2,3,4,5-hexaphenylsilole (HPS): a QM/MM study. J Phys Chem A. 2014;118:9094–9104.
  • Wu QY, Deng CM, Peng Q, et al. Quantum chemical insights into the aggregation induced emission phenomena: a QM/MM study for pyrazine derivatives. J Comput Chem. 2012;33:1862–1869.
  • Lebras L, Adamo C, Perrier A. In silico investigation of the aggregation-caused quenching: the ‘tolane-based molecule’ case. ChemPhotoChem. 2019;3:794–803.
  • Shuai Z, Peng Q. Excited states structure and processes: understanding organic light-emitting diodes at the molecular level. Phys Rep. 2014;537:123–156.
  • Li Q, Blancafort L. A conical intersection model to explain aggregation induced emission in diphenyl dibenzofulvene. Chem Commun. 2013;49:5966–5968.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16, revision C.01. Wallingford (CT): Gaussian Inc.; 2016.
  • Lu T. optDFTw program v1.0. Available from: http://sobereva.com/346.
  • Scalmani G, Frisch MJ. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys. 2010;132:114110.
  • Cossi M, Barone V. Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys. 2001;115:4708–4717.
  • Cammi R, Corni S, Mennucci B, et al. Electronic excitation energies of molecules in solution: state specific and linear response methods for nonequilibrium continuum solvation models. J Chem Phys. 2005;122:104513.
  • Improta R, Barone V, Scalmani G, et al. A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Chem Phys. 2006;125:54103.
  • Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011;32:1456–1465.
  • Lee C, Yang W, Parr RG. Development of the colle-salvetti correlation-energy into a function of the electron density. Phys Rev. 1998;37:785–788.
  • Petersson GA, Bennett A, Tensfeldt TG, et al. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys. 1988;89:2193–2218.
  • Gross EKU, Runge E. Density-functional theory for time-dependent systems. Phys Rev Lett. 1984;52:997–1000.
  • Kohn W, Gross EKU. Local density-functional theory of frequency-dependent linear response. Phys Rev Lett. 1985;55:2850–2852.
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–38.
  • Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–592.
  • Liu Z, Lu T, Chen Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity. Carbon. 2020;165:461–467.
  • Dapprich S, Komáromi I, Byun KS, et al. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J Mol Struc Theochem. 1999;461:1–21.
  • Vreven T, Morokuma K, Farkas Ö, et al. Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints. J Comput Chem. 2003;24:760–769.
  • Wang JM, Wolf RM, Caldwell JW, et al. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–1174.
  • Silva AWSD, Vranken WF. ACPYPE – antechamber python parser interface. BMC Res Notes. 2012;5:367.
  • Case DA, Belfon K, Ben-Shalom IY, et al. AMBER 2020. San Francisco: University of California; 2020.
  • Lindahl E, Abraham MJ, Hess B, et al. GROMACS 2019.5 Manual. In Zenodo; 2019.
  • Martínez L, Andrade R, Birgin EG, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009;30:2157–2164.
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271.
  • Bayly CI, Cieplak P, Cornell W, et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Chem Phys. 1993;97:10269–10280.
  • Berberan Santos MN, Valeur B. Molecular fluorescence: principles and applications. 2nd ed. Verlag GmbH: Wiley-VCH; 2012.
  • Klessinger M, Michl J. Excited states and photochemistry of organic molecules. New York: VCH; 1995.
  • Peng Q, Shuai Z, Fang W, et al. Aggregation-enhanced luminescence and vibronic coupling of silole molecules from first principles. Phys Rev B. 2006;73:205409.
  • Peng Q, Yi Y, Shuai Z, et al. Excited state radiationless decay process with Duschinsky rotation effect: formalism and implementation. J Chem Phys. 2007;126:114302.
  • Reimers JR. A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules. J Chem Phys. 2001;115:9103–9109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.