124
Views
0
CrossRef citations to date
0
Altmetric
Articles

Melting behavior of Ir-Ag-Au nanoalloys: a molecular dynamic study

ORCID Icon, & ORCID Icon
Pages 1155-1162 | Received 19 Nov 2021, Accepted 27 Apr 2022, Published online: 10 May 2022

References

  • Courtois J, Du W, Wong E, et al. Screening iridium-based bimetallic alloys as catalysts for direct ethanol fuel cells. Appl Catal A Gen. 2014;483:85–96.
  • Nose K, Okabe TH. Platinum Group metals production. Treatise Process Metall Elsevier. 2014: 1071–1097.
  • Cho J, Jang I, Park HS, et al. Computational and experimental design of active and durable Ir-based nanoalloy for electrochemical oxygen reduction reaction. Appl Catal B Environ. 2018;235:177–185.
  • Abbaspour M, Akbarzadeh H, Valizadeh Z. Au–Ir nanoalloy nucleation during the gas-phase condensation: a comprehensive MD study including different effects. Inorg Chem Front. 2018;5:1445–1457.
  • Zhang T, Liao S, Dai L, et al. Ir-Pd nanoalloys with enhanced surface-microstructure-sensitive catalytic activity for oxygen evolution reaction in acidic and alkaline media. Sci China Mater. 2018;61:926–938.
  • Li C, Baek JB. Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega. American Chemical Society. 2020;5:31–40.
  • Antolini E. Iridium As catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 2014;4:1426–1440.
  • Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal. 2012;2:1765–1772.
  • Ramírez-Caballero GE, Ma Y, Callejas-Tovar R, et al. Surface segregation and stability of core–shell alloy catalysts for oxygen reduction in acid medium. Phys Chem Chem Phys. 2010;12:2209.
  • Shubin Y, Plyusnin P, Sharafutdinov M, et al. Successful synthesis and thermal stability of immiscible metal Au–Rh, Au–Ir andAu–Ir–Rh nanoalloys. Nanotechnology. 2017;28:205302.
  • Guo H, Li H, Jarvis K, et al. Microwave-Assisted Synthesis of classically immiscible Ag–Ir alloy nanoparticle catalysts. ACS Catal. 2018;8:11386–11397.
  • Zhang H, Lu L, Kawashima K, et al. Synthesis and catalytic activity of crown jewel-structured (IrPd)/Au trimetallic nanoclusters. Adv Mater. 2015;27:1383–1388.
  • Okumura M, Akita T, Haruta M, et al. Multi-component noble metal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin. Appl Catal B Environ. 2003;41:43–52.
  • Jiménez-Díaz LM, Pérez LA. Structural and electronic properties of AuIr nanoalloys. Eur Phys J D. 2013;67:15.
  • Akbarzadeh H, Abbaspour M, Mehrjouei E. Phase transition in crown-jewel structured Au-Ir nanoalloys with different shapes: A molecular dynamics study. Phys Chem Chem Phys. 2016;18:25676–25686.
  • Abbaspour M, Akbarzadeh H, Salemi S, et al. Investigation of possible formation of Au@M (M = Cu, Ir, Pt, and Rh) core–shell nanoclusters in a condensation–coalescence Process using molecular dynamics simulations. Ind Eng Chem Res. 2018;57:14837–14845.
  • Abbaspour M, Akbarzadeh H, Lotfi S. Icosahedral Ir, Rh, Pt, and Cu nanoclusters into gold vapor environment: thermodynamic and structural analysis of the formed core@shell nanoclusters using MD simulations. J Alloys Compd. 2018;764:323–332.
  • Sankaranarayanan SKRS, Bhethanabotla VR, Joseph B. Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters. Phys Rev B. 2005;71:195415.
  • Garip AK. A molecular dynamics study: structures and thermal stability of Pd m Pt(13−m)Ag42 ternary nanoalloys. Int J Mod Phys C. 2018;29:1850084.
  • Taran S. Composition effect on melting behaviors of Cu-Au-Pt trimetallic nanoalloys. Comput Theor Chem. 2019;1166:112576.
  • Wang L-C, Zhong Y, Jin H, et al. Catalytic activity of nanostructured Au: scale effects versus bimetallic/bifunctional effects in low-temperature CO oxidation on nanoporous Au. Beilstein J Nanotechnol. 2013;4:111–128.
  • Li S, Chen H, Liu X, et al. The precise editing of surface sites on a molecular-like gold catalyst for modulating regioselectivity. Chem Sci. 2020;11:8000–8004.
  • Liu JH, Wang AQ, Chi YS, et al. Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation. J Phys Chem B. 2005;109:40–43.
  • Liu X, Li Y, Lee JW, et al. Selective hydrogenation of acetylene in excess ethylene over SiO2 supported Au–Ag bimetallic catalyst. Appl Catal A Gen. 2012;439–440:8–14.
  • Rapallo A, Rossi G, Ferrando R, et al. Global optimization of bimetallic cluster structures. I. size-mismatched Ag–Cu, Ag–Ni, and Au–Cu systems. J Chem Phys. 2005;122:194308.
  • Yildirim H, Arslan H. Size and composition effect on structural properties and melting behaviors of Cu–Ag–Au ternary nanoalloys. Int J Mod Phys C. 2020;31:2050078.
  • Wales DJ, Doye JPK. Global optimization by Basin-Hopping and the lowest energy structures of lennard-Jones clusters containing up to 110 atoms. J Phys Chem A. 1997;101:5111–5116.
  • Keyampi WM, Tsasse TS, Nana B, et al. Global minimization of aluminum clusters using Gupta potential. Chem Phys Lett. 2020;754:137635.
  • Wells DM, Rossi G, Ferrando R, et al. Metastability of the atomic structures of size-selected gold nanoparticles. Nanoscale. 2015;7:6498–6503.
  • Paz-Borbón LO, Johnston RL, Barcaro G, et al. Structural motifs, mixing, and segregation effects in 38-atom binary clusters. J Chem Phys. 2008;128:134517.
  • Chen F, Curley BC, Rossi G, et al. Structure, melting, and thermal stability of 55 atom Ag−Au nanoalloys. J Phys Chem C. 2007;111:9157–9165.
  • Darby S, Mortimer-Jones TV, Johnston RL, et al. Theoretical study of Cu-Au nanoalloy clusters using a genetic algorithm. J Chem Phys. 2002;116:1536–1550.
  • Taran S, Garip AK, Arslan H. A theoretical study on chemical ordering of 38-atom trimetallic Pd–Ag–Pt nanoalloys. Chinese Phys B. 2020;29:077801.
  • Wu GH, Liu QM, Wu X. Geometrical and energetic properties in 38-atom trimetallic AuPdPt clusters. Chem Phys Lett. 2015;620:92–97.
  • Du RB, Xu YQ, Wu X, et al. Geometrical structures of trimetallic Ag–Pd–Pt and Au–Pd–Pt clusters up to 147 atoms. Struct Chem. 2019;30:637–645.
  • Pittaway F, Paz-Borbón LO, Johnston RL, et al. Theoretical studies of palladium−gold nanoclusters: Pd−Au clusters with up to 50 atoms. J Phys Chem C. 2009;113:9141–9152.
  • Taran S, Garip AK, Arslan H. Chemical ordering effect on structural stability of trimetallic Cu-Au-Pt nanoalloys. Phys Scr. 2020;95:85404.
  • Kuntová Z, Rossi G, Ferrando R. Melting of core-shell Ag-Ni and Ag-Co nanoclusters studied via molecular dynamics simulations. Phys Rev B - Condens Matter Mater Phys. 2008;77:1–8.
  • Dalgic SS, Celtek M. Molecular dynamics study of the ternary Cu 50 Ti 25 Zr 25 bulk glass forming alloy. EPJ Web Conf. 2011;15:03008.
  • Zhao Z, Li M, Cheng D, et al. Understanding the structural properties and thermal stabilities of Au–Pd–Pt trimetallic clusters. Chem Phys. 2014;441:152–158.
  • Davis JBA, Johnston RL, Rubinovich L, et al. Comparative modelling of chemical ordering in palladium-iridium nanoalloys. J Chem Phys. 2014;141.
  • Huang R, Wen Y-H, Shao G-F, et al. Atomic structure and thermal stability of Pt–Fe bimetallic nanoparticles: from alloy to core/shell architectures. Phys Chem Chem Phys. 2016;18:17010–17017.
  • Akbarzadeh H, Abbaspour M, Mehrjouei E. Effect of systematic addition of the third component on the melting characteristics and structural evolution of binary alloy nanoclusters. J Mol Liq. 2018;249:412–419.
  • Díaz-Ortiz A, Aguilera-Granja F, Michaelian K, et al. Tight-binding and evolutionary search approach for nanoscale CoRh alloys. Phys B Condens Matter. 2005;370:200–214.
  • Bush IJ, Todorov IT, Smith W. A DAFT DL_POLY distributed memory adaptation of the smoothed particle mesh ewald method. Comput Phys Commun. 2006;175:323–329.
  • Todorov IT, Smith W, Trachenko K, et al. DL_POLY_3: New dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem. 2006;16:1911–1918.
  • Nazareth JL. Conjugate gradient method. WIRES Comput Stat. 2009;1:348–353.
  • Kittel C. Introduction to solid state physics. 8th edition New York (NY): Wiley Sons; 2004.
  • Yildirim H, Garip AK. Heating rate effects for the melting transition of Pt-Ag-Au nanoalloys. Chinese Phys B. 2021;30.
  • Pacheco-Contreras R, Juárez-Sánchez JO, Dessens-Félix M, et al. Empirical-potential global minima and DFT local minima of trimetallic AglAumPtn (l + m + n = 13, 19, 33, 38) clusters. Comput Mater Sci. 2018;141:30–40.
  • Wu X, Wu G, Chen Y, et al. Structural optimization of Cu - Ag - Au trimetallic clusters by adaptive immune optimization algorithm. J Phys Chem A. 2011;115:13316–13323.
  • Wu G, Sun Y, Wu X, et al. Large scale structural optimization of trimetallic Cu–Au–Pt clusters up to 147 atoms. Chem Phys Lett. 2017;686:103–110.
  • Akbarzadeh H, Mehrjouei E, Ramezanzadeh S, et al. Ni-Co bimetallic nanoparticles with core-shell, alloyed, and janus structures explored by MD simulation. J Mol Liq. 2017;248:1078–1095.
  • Kart HH, Yildirim H, Ozdemir Kart S, et al. Physical properties of Cu nanoparticles: A molecular dynamics study. Mater Chem Phys. 2014;147:204–212.
  • Lee M-S, Chacko S, Kanhere DG. First-principles investigation of finite-temperature behavior in small sodium clusters. J Chem Phys. 2005;123:164310.
  • Mejía-Rosales SJ, Fernández-Navarro C, Pérez-Tijerina E, et al. Two-Stage melting of Au−Pd nanoparticles. J Phys Chem B. 2006;110:12884–12889.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.