170
Views
4
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics and intrinsic disorder analysis of the SARS-CoV-2 Nsp1 structural changes caused by substitution and deletion mutations

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1192-1201 | Received 15 Feb 2022, Accepted 02 May 2022, Published online: 19 May 2022

References

  • Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583:459–468. doi:10.1038/s41586-020-2286-9.
  • Clark LK, Green TJ, Petit CM. Structure of nonstructural protein 1 from SARS-CoV-2. J Virol. 2020;95. doi:10.1128/jvi.02019-20.
  • Egorova T, Alkalaeva E. Nsp1 of SARS-CoV-2 stimulates host translation termination, (2020).
  • Kamitani W, Narayanan K, Huang C, et al. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc Natl Acad Sci U S A. 2006;103:12885–12890. doi:10.1073/pnas.0603144103.
  • Vankadari N, Jeyasankar NN, Lopes WJ. Structure of the SARS-CoV-2 Nsp1/5′-untranslated region complex and implications for potential therapeutic targets, a vaccine, and virulence. J Phys Chem Lett. 2020: 9659–9668. doi:10.1021/acs.jpclett.0c02818.
  • Tohya Y, Narayanan K, Kamitani W, et al. Suppression of host gene expression by nsp1 proteins of Group 2 Bat coronaviruses. J Virol. 2009;83:5282–5288. doi:10.1128/jvi.02485-08.
  • Pandala N, Cole CA, McFarland D, et al. A preliminary investigation in the molecular basis of Host Shutoff Mechanism in SARS-CoV, Proc. 11th ACM International Conference on Bioinformatics, Computational Biology Health Informatics, BCB 2020. (2020). doi:10.1145/3388440.3412483.
  • Semper C, Watanabe N, Savchenko A. Structural characterization of nonstructural protein 1 from SARS-CoV-2. Science. 2021;24:101903. doi:10.1016/j.isci.2020.101903.
  • Schubert K, Karousis ED, Jomaa A, et al. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol. 2020;27:959–966. doi:10.1038/s41594-020-0511-8.
  • Thoms M, Buschauer R, Ameismeier M, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science (80-). 2020;369:1249–1256. doi:10.1126/SCIENCE.ABC8665.
  • Lokugamage KG, Narayanan K, Huang C, et al. Severe Acute Respiratory Syndrome Coronavirus protein nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation. J Virol. 2012;86:13598–13608. doi:10.1128/jvi.01958-12.
  • Tanaka T, Kamitani W, DeDiego ML, et al. Severe acute respiratory syndrome Coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA. J Virol. 2012;86:11128–11137. doi:10.1128/jvi.01700-12.
  • Bouayad A. Innate immune evasion by SARS-CoV-2: comparison with SARS-CoV. Rev Med Virol. 2020;30:1–9. doi:10.1002/rmv.2135.
  • Almeida MS, Johnson MA, Herrmann T, et al. Novel β-Barrel fold in the nuclear magnetic resonance structure of the replicase Nonstructural Protein 1 from the Severe Acute Respiratory Syndrome coronavirus. J Virol. 2007;81:3151–3161. doi:10.1128/jvi.01939-06.
  • Narayanan K, Huang C, Lokugamage K, et al. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol. 2008;82:4471–4479. doi:10.1128/JVI.02472-07.
  • Yuan S, Balaji S, Lomakin IB, et al. Coronavirus nsp1: immune response suppression and protein expression inhibition. Front Microbiol. 2021;12:2683. https://www.frontiersin.org/article/10.3389/fmicb.2021.752214.
  • Singer J, Gifford R, Cotten M, et al. CoV-GLUE: a Web application for tracking SARS-CoV-2 Genomic variation. Preprints. 2020;2020060225; doi:10.20944/preprints202006.0225.v1.
  • Rodrigues CHM, Pires DEV, Ascher DB. Dynamut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 2018;46:350–355. doi:10.1093/nar/gky300.
  • Rezaei S, Sefidbakht Y, Uskoković V. Comparative molecular dynamics study of the receptor-binding domains in SARS-CoV-2 and SARS- CoV and the effects of mutations on the binding affinity. J Biomol Struct Dyn. 2020: 1–20. doi:10.1080/07391102.2020.1860829.
  • Zhang N, Chen Y, Lu H, et al. Mutabind2: predicting the impacts of single and multiple mutations on protein-protein interactions. IScience. 2020;23:100939. doi:10.1016/j.isci.2020.100939.
  • Piovesan D, Minervini G, Tosatto SCE. The RING 2. 0 web server for high quality residue interaction networks. Nucleic Acids Res. 2016;44:367–374. doi:10.1093/nar/gkw315.
  • Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970;48:443–453. doi:10.1016/0022-2836(70)90057-4.
  • Rice P, Longden L, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16:276–277. doi:10.1016/S0168-9525(00)02024-2.
  • Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015;43:W174–W181. doi:10.1093/nar/gkv342.
  • Laskowski RA, MacArthur MW, Moss DS, et al. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26:283–291. doi:10.1107/s0021889892009944.
  • Laskowski RA, Rullmann JAC, MacArthur MW, et al. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996;8:477–486. doi:10.1007/BF00228148.
  • Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:407–410. doi:10.1093/nar/gkm290.
  • Vriend G, Sander C. Quality control of protein models: directional atomic contact analysis. J Appl Crystallogr. 1993;26:47–60. doi:10.1107/S0021889892008240.
  • Anandakrishnan R, Aguilar B, Onufriev AV. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 2012;40:537–541. doi:10.1093/nar/gks375.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612. doi:10.1002/jcc.20084.
  • Romero P, Obradovic Z, Li X, et al. Sequence complexity of disordered protein. Proteins Struct Funct Bioinforma. 2001;42:38–48. doi:10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3.
  • Peng K, Radivojac P, Vucetic S, et al. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics. 2006;17:1–17. doi:10.1186/1471-2105-7-208.
  • Peng K, Vucetic S, Radivojac P, et al. Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol. 2005;3:35–60. doi:10.1142/s0219720005000886.
  • Xue B, Dunbrack RL, Williams RW, et al. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta - Proteins Proteom. 2010;1804:996–1010. doi:10.1016/j.bbapap.2010.01.011.
  • Mészáros B, Erdös G, Dosztányi Z. IUPred2a: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 2018;46:W329–W337. doi:10.1093/nar/gky384.
  • Necci M, Piovesan D, Predictors C, et al. Critical assessment of protein intrinsic disorder prediction. Nat Methods. 2021;18:472–481. doi:10.1038/s41592-021-01117-3.
  • Petersen B, Petersen TN, Andersen P, et al. A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol. 2009;9:51. doi:10.1186/1472-6807-9-51.
  • wen Lin J, Tang C, cheng Wei H, et al. Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response. Cell Host Microbe. 2021;29:489–502.e8. doi:10.1016/j.chom.2021.01.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.