138
Views
1
CrossRef citations to date
0
Altmetric
Articles

First-principles calculations to investigate structural phase transformation to semi-conductor–metal transition and their impact on optical properties in lead titanium oxynitrate

ORCID Icon, , , &
Pages 1231-1239 | Received 08 Feb 2022, Accepted 12 May 2022, Published online: 31 May 2022

References

  • Benkabou MH, Harmel M, Haddou A, et al. Mohd RaÞe Johan “structural, electronic, optical and thermodynamic investigations of NaXF3 (X = Ca and Sr): first-principles calculations.” Chin J Phys. 2018;56(1):131–144.
  • Bidai K, Ameri M, Amel S, et al. First-principles calculations of pressure and temperature dependence of thermodynamic properties of anti-perovskite BiNBa3 compound. Chin J Phys. 2017;55(5):2144–2155.
  • Rabe KM, Waghmare UV. Ferroelectric phase transitions from first principles. J Phys Chem Solids. 1996;57:1397–1403.
  • Garcia A, Vanderbilt D. First-principles study of stability and vibrational properties of tetragonal PbTiO3. Phys Rev B. 1996;54:3817–3824.
  • Boudiaf K, Bouhemadou A, Al-Douri Y, et al. Electronic and thermoelectric properties of the layered BaFAgCh (Ch = S, Se and Te): first-principles study. J Alloys Compd. 2018;759:32–43.
  • Bziz I, Atmani EH, Fazouan N, et al. First-principles calculations of structural, electronic and optical properties of CdTexS1-x and Cd1-xZnxS ternary alloys. Surf Interfaces. 2021;24:101126.
  • Khireddine A, Bouhemadou A, Alnujaim S, et al. First-principles predictions of the structural, electronic, optical and elastic properties of the Zintl-phases AE3GaAs3 (AE = Sr, Ba). Solid State Sci. 2021;114:106563.
  • Ameri M, Bennar F, Amel S, et al. Structural, elastic, thermodynamic and electronic properties of LuX (X = N, Bi and Sb) compounds: first principles calculations. Ph Transit. 2016;89(12):1236–1252.
  • Fadila B, Ameri M, Bensaid D, et al. Structural, magnetic, electronic and mechanical properties of full-Heusler alloys Co2YAl (Y = Fe, Ti): first principles calculations with different exchange-correlation potentials. J Magn Magn Mater. 2018;448:208–220.
  • Souadia Z, Bouhemadou A, Khenata R, et al. Structural, elastic and lattice dynamical properties of the alkali metal tellurides: first-principles study. Phys B: Condens Matter. 2017;521:204–214.
  • Selbach SM, Wang G, Einarsrud MA, et al. Decomposition and crystallization of a Sol–Gel-derived PbTiO3 precursor. J Am Ceram Soc. 2007;90:2649–2652.
  • Xing XR, Deng J, Chen J, et al. Novel thermal expansion of lead titanate. Rare Met. 2003;22:1.
  • Chen J, et al. Zero thermal expansion in PbTiO3-based perovskites. J Am Ceram Soc. 2008;130(4 ):1144–1145.
  • Chen J, Xing X, Sun C, et al. The role of spontaneous polarization in the negative thermal expansion of tetragonal PbTiO3-based compounds. J Am Ceram Soc. 2011;133:11114–11117.
  • Haertling GH. Ferroelectric ceramics: history and technology. J Am Ceram Soc. 1999;82:797–818.
  • Lines ME, Glass AM. Principles and applications of ferroelectrics and related materials. Oxford: Oxford university press; 2001.
  • Park TJ, Papeafthymiou GC, Viescas AJ, et al. Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 2007;7:766–772.
  • Wojcik K. Electrical properties of PbTiO3 single crystals doped with lanthanum. Ferroelectrics. 1989;99:5–12.
  • Haun MJ, Furman E, Jang SJ, et al. Thermodynamic theory of PbTiO3. J Appl Phys. 1985;62:3331–3338.
  • Rizwan M, Bibi R, Mahmood T, et al. Band gap modulation effect on electronic and optical properties in PbTiO3 under stress: a DFT study. J Appl Phys. 2019;88:10501.
  • Damjanovic D, Gururaja TR, Jang SJ, et al. Temperature behavior of the complex piezoelectric d31 coefficient in modified lead titanate ceramics. Mater Lett. 1986;4:414–419.
  • Moussali A, Amina MB, Fassi B, et al. First-principles calculations to investigate structural and thermodynamic properties of Ni2LaZ (Z = As, Sb and Bi) Heusler alloys. Indian J Phys. 2020;94(11):1733–1747.
  • Fukumoto A. The application of piezoelectric ceramics in diagnostic ultrasound transducers. Ferroelectrics. 1982;40:217–230.
  • Wang J, Xu J, Goodman MD, et al. A simple biphasic route to water soluble dithiocarbamate functionalized quantum dots. J Mater Chem. 2006;89:133110.
  • Xu J, Wang J, Mitchell M, et al. Organic-Inorganic nanocomposites via directly grafting conjugated polymers onto quantum dots. J Am Chem Soc. 2007;129:12828–12833.
  • Lin Z. Organic-Inorganic nanohybrids through the direct tailoring of semiconductor nanocrystals with conjugated polymers. Chem: Eur J. 2008;14:6294–6301.
  • Zeba I, Ramzan M, Ahmad R, et al. First-principles computation of magnesium doped CaZrO3 perovskite: A study of phase transformation, bandgap engineering and optical response for optoelectronic applications. Solid State Commun. 2020;313:113907.
  • Ghosez P, Cockayne E, Waghmare UV, et al. Lattice dynamics of BaTiO3, PbTiO3, and PbZrO3: a comparative first-principles study. Phys Rev B 1999;60:836.
  • Zhong W, Vanderbilt D, Rabe KM. Phase transitions in BaTiO3 from first principles. Phys Rev Lett. 1994;73:1861–1864.
  • Cohen RE, Krakauer H. Electronic structure studies of the differences in ferroelectric behavior of BaTiO3 and PbTiO3. Ferroelectrics. 1992;136:65–83.
  • Benkaddour Y, Abdelaoui A, Yakoubi A, et al. First-principle calculations of structural, elastic, and electronic properties of intermetallic rare earth R2Ni2Pb (R = Ho, Lu, and Sm) compounds. J Supercond Nov Magn. 2018;31:395–403.
  • Hasni L, Ameri M, Bensaid D, et al. First-principles calculations of structural, magnetic electronic and optical properties of rare-earth metals TbX (X = N, O, S, Se). J Supercond Nov Magn. 2017;30(12):3471–3479.
  • Barhoumi M, Sfina N, Znaidia S. First-principles calculations of optical properties of 2D CaFBr and BaFBr monolayers. Phys E: Low-Dimens Syst Nanostructures. 2022;137:115074.
  • Ayad M, Belkharroubi F, Boufadi FZ, et al. First-principles calculations to investigate magnetic and thermodynamic properties of new multifunctional full-Heusler alloy Co2TaGa. Indian J Phys. 2020;94(6):767–777.
  • Alam MJ, Natasya N, Marwan AM, et al. First-principles study on structural and electronic properties of cubic (Pm3m) And tetragonal (P4mm) ATiO₃ (A = Pb, Sn). Sci Res J. 2020;17:150–161.
  • Nelmes RJ, Kuhs WF. The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K. Solid State Commun. 1985;54:721–723.
  • Hosseini SM, Movlarooy T, Kompany A. First-principles calculations of the cohesive energy and the electronic properties of PbTiO3. Phys B: Condens Matter. 2007;391:316–321.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.